Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:41:56.008Z Has data issue: false hasContentIssue false

Influence of in-process copper incorporation on the quality of diamond-like carbon films deposited by pulsed laser deposition technique

Published online by Cambridge University Press:  31 January 2011

S. J. Dikshit
Affiliation:
Center for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune-411 007, India
Pramada Lele
Affiliation:
Center for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune-411 007, India
S.B. Ogale
Affiliation:
Center for Advanced Studies in Materials Science and Solid State Physics, Department of Physics, University of Poona, Pune-411 007, India
S. T. Kshirsagar
Affiliation:
National Chemical Laboratory, Pashan, Pune-411 008, India
Get access

Abstract

Copper-incorporated carbon films have been prepared on Si(100) and Corning (7059) glass substrates by the pulsed excimer laser deposition technique using KrF radiation (λ = 248 nm). Cold-pressed composite pellets, having compositions from 2 at. % to 11 at. % copper in carbon, were used as targets for ablation. Good quality, scratch-proof films were obtained at a laser energy density of 2−3 J/cm2 and a substrate temperature of 50 °C. The films were characterized by x-ray diffraction (XRD), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), UV-visible spectrometry, ellipsometry, and four-point probe resistivity measurements. Under similar deposition conditions, films obtained from composite targets of lower copper concentration are seen to have better diamond-like character as compared to those obtained from a pure graphite target. At such low concentrations, copper is seen to cluster in the form of nanoparticles. As the copper concentration increases in the films, they tend to acquire disordered graphitic network with degraded DLC characteristics, and the size of copper agglomerates increases from about 5 nm (for the 2 at. % case) to 85 nm (for the 11 at. % case). It is seen that an increase in the copper content leads to modifications in the carbon network, additional interband transitions, and reduction of the band gap.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kobayashi, K., Mutsukura, N., and Machi, Y., J. Appl. Phys. 59, 910 (1985).CrossRefGoogle Scholar
2.Hiraki, A., Kawano, T., Kawakami, Y., Mayashi, M., and Miyasato, T., Solid State Commun. 50, 713 (1984).CrossRefGoogle Scholar
3.Kerwin, D. B., Spain, I.L., Robinson, R.S., Dandin, B., Dubus, M., and Fontenille, J., Thin Solid Films 148, 311 (1987).Google Scholar
4.Malshe, A. P., Chaudhari, S. M., Kanetkar, S. M., Ogale, S. B., Rajarshi, S. V., and Kshirsagar, S. T., J. Mater. Res. 4, 1288 (1989).Google Scholar
5.Chen, I., J. Appl. Phys. 64, 3742 (1988).CrossRefGoogle Scholar
6.Dimigen, H. and Hubsch, H., Philips Techn. Rev. 41, 186 (1983/1984).Google Scholar
7.Dimigen, H., Hubsch, H., and Memming, R., Appl. Phys. Lett. 50, 1056 (1987).CrossRefGoogle Scholar
8.Wang, M., Schmidt, K., Reichelt, K., Dimigen, H., and Hübsch, H., J. Mater. Res. 7, 667 (1992).Google Scholar
9.Chen, P. A., Thin Solid Films 182, 261 (1989).Google Scholar
10.Chen, P. A., Thin Solid Films 204, 413 (1991).CrossRefGoogle Scholar
11.Biederman, H., Martinu, L., and Zemek, J., Vacuum 35, 447 (1985).Google Scholar
12.Solin, S. A. and Ramdas, A. K., Phys. Rev. B 1, 1687 (1970).CrossRefGoogle Scholar
13.Nemanich, R. J. and Solin, S. A., Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
14.Tuinstra, F. and Koening, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
15.Al Jishi, R. and Dresselhaus, G., Phys. Rev. B 26, 4514 (1982).CrossRefGoogle Scholar
16.Lespade, P., Marchand, A., Couzi, M., and Cruege, F., Carbon 22, 375 (1984).CrossRefGoogle Scholar
17.Yoshikawa, M., Katagiri, G., Ishida, H., and Ishitani, A., Solid State Commun. 66, 1177 (1988).CrossRefGoogle Scholar
18.Ramsteiner, M., Wagner, J., Wild, Ch., and Koidl, P., J. Appl. Phys. 62, 729 (1987).Google Scholar
19.Lee, E. H., Hembree, D. M. Jr., Rao, G. R., and Mansur, L. K., Phys. Rev. B 48, 15540 (1993).Google Scholar
20.Cho, N. H., Krishnan, K. M., Veirs, D. K., Rubin, M. D., Hopper, C. B., Bhushan, B., and Bogy, D. B., J. Mater. Res. 5, 2543 (1990).CrossRefGoogle Scholar
21.Nemanich, R. J., Glass, J. T., Lucovsky, G., and Shroder, R. E., J. Vac. Sci. Technol. A 6, 1783 (1988).CrossRefGoogle Scholar
22.Wada, N. and Soli, S. A., Physica 105B, 353 (1981).Google Scholar
23.Shroder, R. E., Nemanich, R. J., and Glass, J. T., Phys. Rev. B 41, 3738 (1990).CrossRefGoogle Scholar
24.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), pp. 284, 286.Google Scholar
25.Burkhard, G., Tamura, H., Tanabe, Y., Sawaoka, A., Uematsu, K., and Ohmura, S., J. Mater. Sci. Lett. 13, 1281 (1994).CrossRefGoogle Scholar
26.Wagner, C. D., Rigs, W. M., Devis, L. E., Moulder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979).Google Scholar
27.Shevchik, N. J., Phys. Rev. Lett. 42, 846 (1974).Google Scholar
28.Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol A 5, 3287 (1987).Google Scholar
29.Arakawa, E. T., Williams, M. W., and Inagaki, T., J. Appl. Phys. 48, 3176 (1977).Google Scholar
30.Borgogno, J. P., Lazarides, B., and Pelletier, E., Appl. Opt. 21, 4020 (1982).CrossRefGoogle Scholar
31.Smith, F. W., J. Appl. Phys. 55, 764 (1984).CrossRefGoogle Scholar
32.Sernelius, B. E., Berggren, K. F., Jin, Z. C., Hamberg, I., and Granqvist, C. G., Phys. Rev. B 37, 10244 (1991).CrossRefGoogle Scholar
33.Alterovitz, S. A., Warner, J. D., Liu, D. C., and Pouch, J. J., J. Electrochem. Soc.: Solid State Sci. Technol. 133, 2339 (1986).Google Scholar
34.Morgan, M., Thin Solid Films 7, 313 (1971).CrossRefGoogle Scholar