Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T01:00:46.409Z Has data issue: false hasContentIssue false

Influence of matrix characteristics on fracture toughness of high volume fraction Al2O3/Al–AlN composites

Published online by Cambridge University Press:  31 January 2011

N. Nagendra
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
V. Jayaram
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagendra, N. and Jayaram, V., J. Mater. Res. 15, 1131 (2000).CrossRefGoogle Scholar
2.Mahon, G.J., Howe, J.M., and Vasudevan, A.K.. Acta Metall. Mater. 38, 1503 (1990).CrossRefGoogle Scholar
3.Llorca, J., Needleman, A., and Suresh, S., Acta Metall. Mater. 39, 2317 (1991).CrossRefGoogle Scholar
4.Shakesheff, A.J., J. Mater. Sci. 30, 2269 (1995).CrossRefGoogle Scholar
5.Rozak, G.A., Altmisolgu, A.A., Lewandowski, J.J., and Wallace, J.F., J. Compos. Mater. 26, 2076 (1992).CrossRefGoogle Scholar
6.Lewandowski, J.J., Liu, C., and Hunt, W.H., in Processing and Properties of Powder Metallurgy Composites, edited by Kumar, P., Vedula, K., and Ritter, A.M. (TMS/AIME, Warrendale, PA, 1988), p. 117.Google Scholar
7.Liu, C., Pape, S., and Lewandowski, J.J., in Interfaces in Polymer, Ceramic and Metal Matrix Composites, edited by Ishida, H. (Elsevier Science, New York, 1988), p. 513.Google Scholar
8.Manoharan, M. and Lewandowski, J.J., Int. J. Fract. 40, R31 (1989).CrossRefGoogle Scholar
9.Doel, T.G.A, Loretto, M.H., and Bowen, P., Composites 24, 270 (1993).CrossRefGoogle Scholar
10.Doel, T.G.A and Bowen, P., Mat. Sci. Technol. 12, 586 (1996).Google Scholar
11.Roebuck, B. and Lord, J.D., Mat. Sci. Technol. 12, 1199 (1990).CrossRefGoogle Scholar
12.Flom, Y. and Arsenault, R.J., Acta Metall. 37, 2413 (1989).Google Scholar
13.Ritchie, R.O., Mat. Sci. Eng. A 103A, 15 (1988).CrossRefGoogle Scholar
14.Aghajanian, M.K., Burke, J.T., White, D.R., and Nagelberg, A.S., SAMPE Quarterly 20, 43 (1989).Google Scholar
15.Breval, E., Aghajanian, M.K., Biel, J.P., and Antolin, S., J. Am. Ceram. Soc. 76, 1865 (1993).CrossRefGoogle Scholar
16.Nagendra, N., Ph.D. Thesis, Indian Institute of Science, Bangalore, India (1997).Google Scholar
17.Ribes, H. and Suery, M., Scripta Metall. 23, 705 (1989).CrossRefGoogle Scholar
18.Trowle, D.J. and Friend, C.M., Scripta Metall. Mater. 26, 437 (1992).CrossRefGoogle Scholar
19.Nieh, T.G. and Karlak, R.F., Scripta Metall. 18, 25 (1984).CrossRefGoogle Scholar
20.Christman, T. and Suresh, S., Acta Metall. 36, 1691 (1988).CrossRefGoogle Scholar
21.Vogelsang, M., Arsenault, R.J., and Fisher, R.M., Metall. Trans. A 17A, 379 (1986).CrossRefGoogle Scholar
22.Arsenault, R.J. and Shi, N., Mater. Sci. Eng., A 81, 175 (1986).CrossRefGoogle Scholar
23.Christman, T., Needleman, A., and Suresh, S., Acta. Metall. 37, 3029 (1989).CrossRefGoogle Scholar
24.Chawla, K.K., Esmaeli, A.H., Datye, A.K., and Vasudevan, A.K., Scripta Metall. Mater. 25, 1315 (1991).CrossRefGoogle Scholar
25.DaFir, D., Guichon, G., Borelly, R., Cardinal, S., Gobin, P.F., and Merle, P., Mater. Sci. Eng. A 144A, 311 (1991).CrossRefGoogle Scholar
26.Salvo, L. and Suéry, M., Mater. Sci. Eng., A 177A, 19 (1994).Google Scholar
27.Jacobs, M.H., Philos. Mag. 26, 1 (1972).CrossRefGoogle Scholar
28.Thomas, G., J. Inst. Met. 90, 57 (1962).Google Scholar
29.Dorward, R.C., Metall. Trans. 4A, 507 (1973).Google Scholar
30.Pashley, D.W., Jacobs, M.H., Vietz, J.T., Philos. Mag. 16, 51 (1967).Google Scholar
31.Papazian, J.M., Metall. Trans. 19A, 2945 (1988).Google Scholar
32.Shang, J.K., Yu, W., and Ritchie, R.O., Mater. Sci. Eng., A 102A, 191 (1988).Google Scholar
33.Manoharan, M. and Lewandowski, J.J., Scripta Metall. 23, 301 (1989).CrossRefGoogle Scholar
34.He, M. and Hutchinson, J.W., Int. J. Solids Struct. 25, 1053 (1989).Google Scholar
35.Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).Google Scholar
36.Evans, A.G., Dalgleish, B.J., He, M., and Hutchinson, J.W., Acta Metall. 37, 3249 (1989).CrossRefGoogle Scholar
37.Liu, G., Zhang, Z., and Shang, J.K., Acta Metall. Mater. 42, 271 (1994).CrossRefGoogle Scholar
38.Johnson, K.L., J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
39.Leggoe, J.W., Hu, X.Z., Swain, M.V., and Bush, M.B., Scripta. Metall. Mater. 31, 577 (1994).CrossRefGoogle Scholar