Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T23:58:41.345Z Has data issue: false hasContentIssue false

Influence of microstructure on indentation and machining of dental glass-ceramics

Published online by Cambridge University Press:  31 January 2011

Hockin H. K. Xu
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Douglas T. Smith
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Said Jahanmir
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The influence of microstructure on the abrasive machining and indentation response for a series of dental glass-ceramics was characterized. The experimental materials prepared for this study contained crystalline mica platelets that ranged in diameter from about 1 to 15 μm, while the volume fraction of mica remained essentially constant. Damage formation and material removal behavior were studied as a function of mica platelet size using Vickers indentation, Berkovich instrumented indentation, and abrasive machining. In the instrumented indentation experiments, the energy absorbed in indentation decreased with increasing platelet size when indentations of equal penetration depth are made in each material. To characterize the grinding response, the normal and tangential forces for each material were measured as a function of the depth of cut in surface grinding. The grinding forces and the specific grinding energy at fixed depths of cut decreased with increasing the mica platelet size following the same trend observed in the fixed displacement indentation tests. Since the same microfracture process was observed to occur in both indentation and grinding, the absorbed indentation energy is proposed as a quantity for predicting the machining response of these glass-ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rekow, D., J. Am. Dent. Assoc. 122, 4248 (1991).Google Scholar
2.Kelly, J. B., Luthy, H., Gougoulakis, A., Pober, R. L., and Mormann, W.H., in Proceedings of the International Symposium on Computer Restorations: The State of the Art of the Cerec-Method, edited by Mormann, W.H. (Quintessenz Verlags-GmbH, Berlin, Germany, 1991), pp. 253273.Google Scholar
3.Luthy, H., Besek, M., and Mormann, W.H., in Proceedings of the International Symposium on Computer Restorations: The State of the Art of the Cerec-Method, edited by Mormann, W. H. (Quintessenz Verlags-GmbH, Berlin, Germany, 1991), pp. 613622.Google Scholar
4.Xu, H. H. K. and Jahanmir, S., J. Mater. Sci. 30, 22352247 (1995).Google Scholar
5.Xu, H. H. K. and Jahanmir, S., Ceram. Eng. Sci. Proc. 16, 295314 (1995).CrossRefGoogle Scholar
6.Xu, H. H. K. and Jahanmir, S., J. Am. Ceram. Soc. 78, 497500 (1995).CrossRefGoogle Scholar
7.Strakna, T. J., Jahanmir, S., Allor, R. L., and Kumar, K. V., J. Eng. Mat. Tech. (in press).Google Scholar
8.Ernsberger, F. M., J. Non-Cryst. Solids 25, 295322 (1977).CrossRefGoogle Scholar
9.Izumitani, T., in Treatise on Materials Science and Technology, edited by Tomozawa, M. and Doremus, R.H. (Academic Press, New York, 1979), Vol. 17, pp. 155171.Google Scholar
10.Hagan, J. T., J. Mater. Sci. 14, 29752980 (1979).Google Scholar
11.Hagan, J. T., J. Mater. Sci. 15, 14171424 (1980).Google Scholar
12.Lawn, B. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1993), Chaps. 7–9.CrossRefGoogle Scholar
13.Evans, A. G. and Marshall, D. B., in Fundamentals of Friction and Wear of Materials, edited by Rigney, D. A. (American Society for Metals, Metals Park, OH, 1981), pp. 439452.Google Scholar
14.Xu, H. H. K., Wei, L., Padture, N. P., Lawn, B. R., and Yeckley, R. L., J. Mater. Sci. 30, 869878 (1995).Google Scholar
15.Xu, H. H. K., Jahanmir, S., and Wang, Y., J. Am. Ceram. Soc. 78, 881891 (1995).CrossRefGoogle Scholar
16.Chyung, C. K., Beall, G. H., and Grossman, D. G., in Electron Microscopy and Structure of Materials, edited by Thomas, G., Fulrath, R. M., and Fisher, R. M. (University of California Press, Berkeley, CA, 1972), pp. 11671194.CrossRefGoogle Scholar
17.Beall, G. H., U.S. Patent No. 4608 348 (1986).Google Scholar
18.Grossman, D. G. and Johnson, J. L. M., U.S. Patent No. 4 652 312 (1987).Google Scholar
19.Beall, G. H., J. Non-Cryst. Solids 129, 163173 (1991).CrossRefGoogle Scholar
20.Grossman, D. G., in Proceedings of the International Symposium on Computer Restorations: The State of the Art of the Cerec-Method, edited by Mormann, W. H. (Quintessenz VerlagsGmbH, Berlin, Germany, 1991), pp. 103115.Google Scholar
21.Grossman, D. G., J. Dent. Res. 70, 433 (1991).Google Scholar
22.Beall, G. H., Annu. Rev. Mater. Sci. 22, 91119 (1992).Google Scholar
23.Beall, G. H., J. Mater. Educ. 14, 315361 (1992).Google Scholar
24.Gegauff, A. G., Rosenstiel, S. F., Bleiholder, R. F., and McCafferty, R. J., J. Dent. Res. 68, 400 (1989).Google Scholar
25.Cai, H., Kalceff, M. A. S., and Lawn, B. R., J. Mater. Res. 9, 762770 (1994).CrossRefGoogle Scholar
26.Fischer-Cripps, A. C. and Lawn, B. R., Acta Mater. 44, 519527 (1996).Google Scholar
27.Berkovich, E. S., Zavod. Lab. 16, 345347 (1950).Google Scholar
28.Page, T. F. and Hainsworth, S. V., Surf. Coatings Technol. 61, 201208 (1993).Google Scholar
29.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).Google Scholar
30.Malkin, S., Grinding Technology (Ellis Horwood, New York, 1989).Google Scholar
31.Malkin, S. and Ritter, J.E., J. Eng. Industry 111, 167174 (1989).CrossRefGoogle Scholar
32.Xu, H. H. K., Padture, N. P., and Jahanmir, S., J. Am. Ceram. Soc. 78, 24432448 (1995).Google Scholar
33.Jahanmir, S. and Dong, X., Wear 181–183, 821–825 (1995).Google Scholar