Published online by Cambridge University Press: 31 January 2011
We present a description of the thermal behavior of cascades in Cu and Ag over a large energy range and irradiation temperatures. For this purpose the binary collision approximation, which gives the profile of the energy deposition, is coupled to a simplified version of the heat equation. In the present calculations, the original liquid drop model [M. Alurralde, A. Caro, and M. Victoria, J. Nucl. Mater. 183, 33 (1991)] has been extended to the case where the lattice is at finite temperatures. The resulting evolution of the liquid cascade is analyzed for PKA energies up to 1 MeV, and the results are compared to experimental observations of mixing rates. We obtain a temperature dependence that adds to the traditional Radiation Enhanced Diffusion, RED, in very good qualitative agreement with experiments on materials showing thermal spikes.