Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T23:20:45.875Z Has data issue: false hasContentIssue false

Influence of the loading rate on the indentation response of Ti-based metallic glass

Published online by Cambridge University Press:  31 January 2011

J. Sort*
Affiliation:
Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J. Fornell
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
W. Li
Affiliation:
School of Materials Science and Engineering, Anhui University of Technology, 243002 Maanshan Anhui, China
S. Suriñach
Affiliation:
Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
M.D. Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*
a) Address all correspondence to this author. e-mail: jordi.sort@uab.es
Get access

Abstract

The mechanical behavior of Ti-based metallic glass has been investigated by means of indentation experiments at different loading rates. Contrary to many crystalline materials, an increase of the loading rate causes a reduction of hardness, i.e., a mechanical softening. This effect is ascribed to deformation-induced creation of excess free volume, which is more pronounced for higher strain rates. The decrease of hardness is accompanied with an increase of the contact stiffness and a reduction of the reduced elastic modulus. Finite element simulations reveal that the mechanical response of this material can be described using the Mohr-Coulomb yield criterion. The changes in the nanoindentation curves with the increase of loading rate are well reproduced by decreasing the value of the Mohr-Coulomb cohesive stress. This result is consistent with the presumed enhancement of free volume.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bhushan, B.: Nanotribology and nanomechanics in nano/biotechnology. Philos. Trans. R. Soc. London, Ser. A 366, 1499 (2008).Google Scholar
2.Fischer-Cripps, A.C.: Nanoindentation, 1st ed. (Springer-Verlag Inc., New York, 2002).CrossRefGoogle Scholar
3.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
4.Mukhopadhyay, N.K. and Paufler, P.: Micro- and nanoindentationtechniques for mechanical characterisation of materials. Int. Mater. Rev. 51, 209 (2006).Google Scholar
5.Cheng, Y.T. and Cheng, C.M.: Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int. J. Solids Struct. 36, 1231 (1999).Google Scholar
6.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).Google Scholar
7.Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).Google Scholar
8.Ramamurty, U., Jana, S., Kawamura, Y., and Chattopadhyay, K.: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).CrossRefGoogle Scholar
9.Schuh, C.A. and Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).CrossRefGoogle Scholar
10.Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
11.Yang, B. and Nieh, T.G.: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 (2007).CrossRefGoogle Scholar
12.Schuh, C.A., Argon, A.S., Nieh, T.G., and Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 (2003).CrossRefGoogle Scholar
13.Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
14.van Aken, B., de Hey, P., and Sietsma, J.: Structural relaxation and plastic flow in amorphous La50Al25Ni25. Mater. Sci. Eng., A 278, 247 (2000).CrossRefGoogle Scholar
15.de Hey, P., Sietsma, J., and van Den Beukel, A.: Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater. 46, 5873 (1998).Google Scholar
16.van Steenberge, N., Sort, J., Concustell, A., Das, J., Scudino, S., Suriñach, S., Eckert, J., and Baró, M.D.: Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr. Mater. 56, 605 (2007).Google Scholar
17.Yang, F., Geng, K., Liaw, P.K., Fan, G., and Choo, H.: Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321 (2007).CrossRefGoogle Scholar
18.Schuh, C.A. and Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003).CrossRefGoogle ScholarPubMed
19.Vaidyanathan, R., Dao, M., Ravichandran, G., and Suresh, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).CrossRefGoogle Scholar
20.Lund, A.C. and Schuh, C.A.: The Mohr-Coulomb criterion from unit shear processes in metallic glass. Intermetallics 12, 1159 (2004).CrossRefGoogle Scholar
21.Ogata, S., Shimizu, F., Li, J., Wakeda, M., and Shibutani, Y.: Atomistic simulation of shear localization in Cu-Zr bulk metallic glass. Intermetallics 14, 1033 (2006).CrossRefGoogle Scholar
22.Fornell, J., Concustell, A., Suriñach, S., Li, W., Cuadrado, N., Gebert, A., Baró, M.D., and Sort, J.: Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass. Int. J. Plast. (2009 DOI: 10.1016/j.ijplas.2008.11.002).Google Scholar
23.Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).CrossRefGoogle Scholar
24.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity., J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
25.Strader, J.H., Shim, S., Bei, H., Oliver, W.C., and Pharr, G.M.: An experimental evaluation of the constant β relating the contact stiffness to the contact area in nanoindentation. Philos. Mag. 86, 5285 (2006).Google Scholar
26.King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).Google Scholar
27.Wei, B.C., Zhang, T.H., Zhang, L.C., Xing, D.M., Li, W.H., and Liu, Y.: Plastic deformation in Ce-based bulk metallic glasses during depth-sensing indentation. Mater. Sci. Eng., A 449–451, 962 (2007).CrossRefGoogle Scholar
28.Liu, L. and Chan, K.C.: Plastic deformation of Zr-based bulk metallic glasses during nanoindentation. Mater. Lett. 59, 3090 (2005).CrossRefGoogle Scholar
29.Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).Google Scholar
30.Hufnagel, T.C., Jiao, T., Li, Y., Xing, L.Q., and Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 (2002).Google Scholar
31.Concustell, A., Sort, J., Greer, A.L., and Baró, M.D.: Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. Appl. Phys. Lett. 88, 171911 (2006).Google Scholar
32.Lee, Y.H., Kim, J.Y., Nahm, S.H., and Kwon, D.: Loading rate effect on inelastic deformation in a Zr-based bulk metallic glass. Mater. Sci. Eng., A 449–451, 185 (2007).Google Scholar
33.Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H., and Liaw, P.K.: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 (2006).CrossRefGoogle Scholar
34.Narasimhan, R.: Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model. Mech. Mater. 36, 633 (2004).Google Scholar
35.Anand, L. and Su, C.: A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids 53, 1362 (2005).CrossRefGoogle Scholar
36.Zhao, J.: Applicability of the Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock. Int.J. Rock Mech. Min. Sci. 37, 1115 (2000).CrossRefGoogle Scholar
37.Ott, R.T., Sansoz, F., Jiao, T., Warner, D., Fan, C., Molinari, J.F., Ramesh, K. T., and Hufnagel, T.C.: Yield criteria and strain-rate behavior of Zr57.4Cu16.4Ni8.2Ta8Al10 metallic glass-matrix composites. Metall. Mater. Trans. A 37, 3251 (2006).Google Scholar