Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T23:47:06.495Z Has data issue: false hasContentIssue false

Influence of toughness on Weibull modulus of ceramic bending strength

Published online by Cambridge University Press:  03 March 2011

K. Kendall
Affiliation:
ICI New Science Group, P.O. Box 11, The Heath, Runcorn, England
N. McN. Alford
Affiliation:
ICI New Science Group, P.O. Box 11, The Heath, Runcorn, England
S. R. Tan
Affiliation:
ICI New Science Group, P.O. Box 11, The Heath, Runcorn, England
J. D. Birchall
Affiliation:
ICI New Science Group, P.O. Box 11, The Heath, Runcorn, England
Get access

Abstract

It is demonstrated both theoretically and experimentally that fracture toughness does not directly influence the Weibull modulus of ceramic bending strength for materials that obey the Griffith criterion for crack propagation. Weibull modulus remains unchanged as toughness is increased. However, toughness variations with crack length do affect the Weibull modulus. Thus materials that display R-curve behavior or Dugdale character give an increased Weibull modulus and appear more reliable.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Larsen, D. C. and Adams, J. W., in The Proceedings of the 22nd De partment of Energy ATD Contractors Coordination Meeting, Dear born, MI, 1984 (Society of Automotive Engineers, Warrendale, 1985), p. 399.Google Scholar
2Weibull, W., J. Appl. Mech. 18, 293 (1951).Google Scholar
3Kendall, K., Philos. Mag. 52, 561 (1985).Google Scholar
4Jayakilaka, A. De S., Fracture of Engineering Brittle Materials (Applied Science, London, 1979), p. 124.Google Scholar
5Griffith, A. A., Proc. R. Soc. London, Ser. A 221, 163 (1920).Google Scholar
6Birchall, J. D., Howard, A. J., and Kendall, K., Nature 292, 89 (1981).Google Scholar
7Kendall, K., Howard, A. J., and Birchall, J. D., Philos. Trans. R. Soc. London, Ser. A 310, 139 (1983).Google Scholar
8Swain, M. V. and Hannink, R. J. H., Advances in Ceramics, edited by Claussen, N., Riihle, M., and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1984), Vol. 12, p. 225.Google Scholar
9Krafft, J. M., Sullivan, A. M., and Boyle, R. W., in the Proceedings of the Symposium on Crack Propagation, Cranfield, England, September 1961, Vol. 1, p. 8.Google Scholar
10Dugdale, D. S., J. Mech. Phys. Solids 8, 100 (1960).CrossRefGoogle Scholar
11Knott, J. F., Fundamentals of Fracture Mechanics (Butterworths, London, 1973), pp. 6770.Google Scholar