Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:53:51.723Z Has data issue: false hasContentIssue false

Inhibition of tribo-oxidation preceding wear, by single-phased TiNx films formed by ion implantation into TiAl6V4

Published online by Cambridge University Press:  31 January 2011

F. Pons
Affiliation:
Centre de Spectromètrie Nucléaire et de Spectromètrie de Masse, BP1, 91406 Orsay Cedex, France
J. C. Pivin
Affiliation:
Centre de Spectromètrie Nucléaire et de Spectromètrie de Masse, BP1, 91406 Orsay Cedex, France
G. Farges
Affiliation:
Etablissement Technique Central de l'Armement, 16 bis Avenue Prieur de la Cote d'Or, 94114 Arcueil, France
Get access

Abstract

Single-phased films of α-Ti1−x Nx, ∊-Ti2Nx, or δ-TiNx with a homogeneous composition on more than 400 nm were produced by ion implantation at several different energies in the TiAl6V4 alloy. Secondary ion mass spectroscopy (SIMS) profiles and ionic images recorded within the tracks after incremented cycles of friction against a 35NCD16 steel ball in air have shown that a Ti–O–C–N film is progressively formed on the surface of α solid solutions, while more concentrated nitride films resist oxidation. The friction and abrasion resistances of ∊ or δ nitride films are initially improved for a time lasting for as long as their N content increases, but they are finally self-destroying. On the contrary, the hardening effect of N in an α-Ti matrix keeps a really severe amount of abrasion from occurring during running in of the implanted surface, without suppressing the building up of a lubricant oxide hardened by N.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pivin, J. C., Pons, F., Takadoum, J., Pollock, H. M., and Farges, G., J. Mater. Sci. 22, 1087 (1987).CrossRefGoogle Scholar
2Hutchings, R. and Oliver, W.C., Wear 92, 143 (1983); R. Hutchings, Mater. Sci. Eng. 69, 129 (1985).CrossRefGoogle Scholar
3Vardiman, R. G. and Kant, R. A., J. Appl. Phys. 53, 690 (1982); R. G. Vardiman, Mater. Res. Soc. Symp. Proc. 27, 699 (1984).CrossRefGoogle Scholar
4Fleche, D., Gauthier, J. P., and Kapsa, P., Proceedings of Eurotrib 85, Lyon, September 1985, edited by Tribologie, Societe Frangaise de (Elsevier, New York, 1985), Vol. 1, p. 1.4; J. Micros. Spectrosc. Electron. 10, 219 (1985).Google Scholar
5Martinella, R., Giovanardi, S., Chevallard, G., and Villani, M., Mater. Sci. Eng. 69, 247 (1985).CrossRefGoogle Scholar
6Shepard, S. R. and Suh, J., J. Lubr. Technol. 104, 29 (1982).CrossRefGoogle Scholar
7Jones, J. W. and Wert, J. J., Wear 32, 363 (1975).CrossRefGoogle Scholar
8Homuth, K., Richter, E., Rauschenbach, B., and Blochwitz, C., Mater. Sci. Eng. 69, 191 (1985).CrossRefGoogle Scholar
9Chaumont, J., Lalu, F., Salome, M., Lamoise, A. M., and Bernas, H., Nucl. Instrum. Methods 189, 193 (1981).CrossRefGoogle Scholar
10Pons, F., Pequignot, M., and Pivin, J. C., submitted for patent.Google Scholar
11Takadoum, J., Pivin, J. C., Chaumont, J., and CRoques-Carmes, ., J. Mater. Sci. 20, 1480 (1985).CrossRefGoogle Scholar
12Slodzian, G., Ann. Phys. 9, 591 (1974).Google Scholar
13Blaise, G. and Bernheim, M., Surf. Sci. 47, 324 (1975).CrossRefGoogle Scholar
14Pivin, J. C. and Roques-Carmes, C., J. Mass Spectrosc. Ion Phys. 31, 293 (1979); J. Micros. Spectrosc. Electron. 7, 277 (1982).CrossRefGoogle Scholar
15Pivin, J. C., in “Ecole d'Hiver sur la Pulverisation et ses Applications en Microanalyse et Traitement de Surfaces,” Le Vide et les Couches Minces, Special number, January, 1985, p. 189.Google Scholar
16Martin, J. M., Belin, E., Mansot, J. L., Dexpert, H., and Lagarde, P., in Ref. 4, p. 5.4.Google Scholar
17Sundgren, J. E. and Hentzell, H. T. G., J. Vac. Sci. Technol. A 4, 2259 (1986).CrossRefGoogle Scholar