Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:57:50.536Z Has data issue: false hasContentIssue false

Interface passivation strategy improves the efficiency and stability of organic–inorganic hybrid metal halide perovskite solar cells

Published online by Cambridge University Press:  28 August 2020

Zhaoyi Wan*
Affiliation:
School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710072, China
Get access

Abstract

Recently, organic–inorganic hybrid metal halide perovskite (O-IHMHP) has been diffusely used in solar cells due to its remarkable photoelectric property and inexpensive film-forming process. Since organic–inorganic hybrid metal halide perovskite solar cells (O-IHMHPSCs) were introduced in 2009, their photoelectric conversion efficiency has been increased to 25.2%, and their lifespan has been extended to tens of thousands of hours. However, due to processing factors, defects consist in the interfaces of O-IHMHP with the electron transport layer and the hole transport layer. To improve the stability and property of O-IHMHPSCs, these defects must be addressed; to do so, passivation is commonly applied at the interface. This work reviews research on the interface passivation of O-IHMHPSCs. Here, the passivation mechanisms of different additives on the interface defects of O-IHMHP films are analyzed, their impacts on the stability and property of O-IHMHPSCs are compared, and their roles in O-IHMHPSCs are summarized. Finally, the research and development trends of the defect passivation of O-IHMHPSCs are discussed.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Correa-Baena, J.P., Abate, A., Saliba, M., Tress, W., Jacobsson, T.J., Grätzel, M., and Hagfeldt, A.: The rapid evolution of highly efficient perovskite solar cells. Energ. Environ. Sci. 10, 710727 (2017).CrossRefGoogle Scholar
Correa-Baena, J.P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., and Hagfeldt, A.: Promises and challenges of perovskite solar cells. Science 358, 739744 (2017).CrossRefGoogle ScholarPubMed
Rong, Y., Hu, Y., Mei, A., Tan, H., Saidaminov, M.I., Seok Il, S., McGehee, M.D., Sargent, E.H., and Han, H.: Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).CrossRefGoogle ScholarPubMed
Saliba, M., Correa-Baena, J.P., Grätzel, M., Hagfeldt, A., and Abate, A.: Perovskite solar cells: From the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 25542569 (2018).CrossRefGoogle ScholarPubMed
Bai, Y., Meng, X., and Yang, S.: Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv. Energy Mater. 8, 1701883 (2018).CrossRefGoogle Scholar
Seok Il, S., Grätzel, M., and Park, N.G.: Methodologies toward highly efficient perovskite solar cells. Small 14, 1704177 (2018).CrossRefGoogle Scholar
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., and Sum, T.C.: Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344347 (2013).CrossRefGoogle ScholarPubMed
Sun, J., Wu, J., Tong, X., Lin, F., Wang, Y., and Wang, Z.M.: Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 5, 1700780 (2018).CrossRefGoogle ScholarPubMed
Frost, J.M. and Walsh, A.: What is moving in hybrid halide perovskite solar cells? Accounts Chem. Res. 49, 528535 (2016).CrossRefGoogle ScholarPubMed
Lin, Q., Armin, R., Burn, P.L., and Meredith, P.: Filterless narrowband visible photodetectors. Nat. Photonics 9, 687 (2015).CrossRefGoogle Scholar
Boix, P.P., Nonomura, K., Mathews, N., and Mhaisalkar, S.G.: Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17, 1623 (2014).CrossRefGoogle Scholar
Li, T., Pan, Y., Wang, Z., Xia, Y., Chen, Y., and Huang, W.: Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A 5, 1260212652 (2017).CrossRefGoogle Scholar
Ling, L., Yuan, S., Wang, P., Zhang, H., Tu, L., Wang, J., Zhan, Y., and Zheng, L.: Precisely controlled hydration water for performance improvement of organic-inorganic perovskite solar cells. Adv. Funct. Mater. 26, 50285034 (2016).CrossRefGoogle Scholar
Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., and Huang, J.: Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560566 (2018).CrossRefGoogle Scholar
Huang, H., Shi, J., Zhu, L., Li, D., Luo, Y., and Meng, Q.: Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352358 (2016).CrossRefGoogle Scholar
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009).CrossRefGoogle ScholarPubMed
Jeon, N.J., Na, H., Jung, E.H., Yang, T., Lee, Y.G., Kim, G., Shin, H., Seok Il, S., Lee, J., and Seo, J.: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682689 (2018).CrossRefGoogle Scholar
Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T., Noh, J.H., and Seo, J.: Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature 567, 511515 (2019).CrossRefGoogle Scholar
Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., and Seok Il, S.: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 13761379 (2017).CrossRefGoogle ScholarPubMed
Singh, T. and Miyasaka, T.: Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 8, 1700677 (2018).CrossRefGoogle Scholar
Zheng, X., Chen, B., Dai, J., Fang, Y., Bai, Y., Lin, Y., Wei, H., Zeng, X., and Huang, J.: Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 19 (2017).CrossRefGoogle Scholar
Li, N., Tao, S., Chen, Y., Niu, X., Onwudinanti, C.K., Hu, C., Qiu, Z., Xu, Z., Zheng, G., Wang, L., Zhang, Y., Li, L., Liu, H., Lun, Y., Hong, J., Wang, X., Liu, Y., Xie, H., Gao, Y., Bai, Y., Yang, S., Brocks, G., Chen, Q., and Zhou, H.: Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408415 (2019).CrossRefGoogle Scholar
Best Research-Cell Efficiency Chart: https://www.nrel.gov/pv/cell-efficiency.html. NREL 2020.Google Scholar
Grancini, G., Roldán-Carmona, C., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, S., Oswald, F., Angelis, F.D., Graetzel, M., and Nazeeruddin, M.K.: One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 18 (2017).CrossRefGoogle ScholarPubMed
Aristidou, N., Eames, C., Sanchez-Molina, I., Bu, X., Kosco, J., Islam, M.S., and Haque, S.A.: Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 110 (2017).CrossRefGoogle ScholarPubMed
Son, D.Y., Kim, S.G., Seo, J.Y., Lee, S., Shin, H., Lee, D., and Park, N.: Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 13581364 (2018).CrossRefGoogle ScholarPubMed
Ran, C., Xu, J., Gao, W., Huang, C., and Dou, S.: Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 47, 45814610 (2018).CrossRefGoogle ScholarPubMed
Zhang, F., Bi, D., Pellet, N., Xiao, C., Li, Z., Berry, J.J., Zakeeruddin, S.M., Zhu, K., and Grätzel, M.: Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energ. Environ. Sci. 11, 34803490 (2018).CrossRefGoogle Scholar
Zheng, X., Deng, Y., Chen, B., Wei, H., Xiao, X., Fang, Y., Lin, Y., Yu, Z., Liu, Y., Wang, Q., and Huang, J.: Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, 1803428 (2018).CrossRefGoogle ScholarPubMed
Tavakoli, M.M., Bi, D., Pan, L., Hagfeldt, A., Zakeeruddin, S.M., and Grätzel, M.: Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv. Energy Mater. 8, 1800275 (2018).CrossRefGoogle Scholar
Wu, T., Wang, Y., Li, X., Wu, Y., Meng, X., Cui, D., Yang, X., and Han, L.: Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. 9, 1803766 (2019).CrossRefGoogle Scholar
Heo, S., Seo, G., Lee, Y., Lee, D., Seol, M., Lee, J., Park, J., Kim, K., Yun, D., Kim, Y.S., Shin, J.K., Ahn, T.K., and Nazeeruddin, M.K.: Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energ. Environ. Sci. 10, 11281133 (2017).CrossRefGoogle Scholar
Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Pablo, J., Baena, C., Hagfeldt, A., and Grätzel, M.: Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energ. Environ. Sci. 11, 151165 (2018).CrossRefGoogle Scholar
Zhao, Z., Gu, F., Rao, H., Ye, S., Liu, Z., Bian, Z., and Huang, C.: Metal halide perovskite materials for solar cells with long-term stability. Adv. Energy Mater. 9, 1802671 (2019).CrossRefGoogle Scholar
Huang, J., Yuan, Y., Shao, Y., and Yan, Y.: Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 119 (2017).CrossRefGoogle Scholar
Ha, S.T., Liu, X., Zhang, Q., Giovanni, D., Sum, T.C., and Xiong, Q.: Synthesis of organic-inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838844 (2014).CrossRefGoogle Scholar
Huang, H., Polavarapu, L., Sichert, J.A., Susha, A.S., Urban, A.S., and Rogach, A.L.: Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications. NPG Asia Mater. 8, e328 ( (2016).CrossRefGoogle Scholar
Travis, W., Glover, E.N.K., Bronstein, H., Scanlon, D.O., and Palgrave, R.G.: On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 7, 45484556 (2016).CrossRefGoogle ScholarPubMed
Kieslich, G., Sun, S., and Cheetham, A.K.: Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog. Chem. Sci. 5, 47124715 (2014).CrossRefGoogle Scholar
Fu, Y., Hautzinger, M.P., Luo, Z., Wang, F., Pan, D., Aristov, M.M., Guzei, I.A., Pan, A., Zhu, X., and Jin, S.: Incorporating large A cations into lead iodide perovskite cages: Relaxed goldschmidt tolerance factor and impact on exciton–phonon interaction. ACS Central Sci. 5, 13771386 (2019).CrossRefGoogle Scholar
Ball, J.M. and Petrozza, A.: Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 113 (2016).CrossRefGoogle Scholar
Liu, Z., Cao, F., Wang, M., Wang, M., and Li, L.: Observing the defect passivation of grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 59, 41614167 (2020).CrossRefGoogle ScholarPubMed
Li, W., Liu, J., Bai, F.Q., Zhang, H., and Prezhdo, O.V.: Hole trapping by iodine interstitial defects decreases free carrier losses in perovskite solar cells: A time-domain ab initio study. ACS Energy Lett. 2, 12701278 (2017).CrossRefGoogle Scholar
Uratani, H. and Yamashita, K.: Charge carrier trapping at surface defects of perovskite solar cell absorbers: A first-principles study. J. Phys. Chem. Lett. 8, 742746 (2017).CrossRefGoogle ScholarPubMed
Chen, B., Rudd, P.N., Yang, S., Yuan, Y., and Huang, J.: Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 38423867 (2019).CrossRefGoogle ScholarPubMed
Heo, S., Seo, G., Lee, Y., Seol, M., Kim, S.H., Yun, D., Kim, Y., Kim, K., Lee, J., Lee, J., Jeon, W.S., Shin, J.K., Park, J., Lee, D., and Nazeeruddin, M.K.: Origins of high performance and degradation in the mixed perovskite solar cells. Adv. Mater. 31, 1805438 (2019).CrossRefGoogle ScholarPubMed
Landi, G., Neitzert, H.C., Barone, C., Mauro, C., Lang, F., Albrecht, S., Rech, B., and Pagano, S.: Correlation between electronic defect states distribution and device performance of perovskite solar cells. Adv. Sci. 4, 1700183 (2017).CrossRefGoogle ScholarPubMed
Sherkar, T.S., Momblona, C., Gil-Escrig, L., Ávila, J., Sessolo, M., Bolink, H.J., and Koster, L.J.A.: Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 12141222 (2017).CrossRefGoogle ScholarPubMed
Serpetzoglou, E., Konidakis, I., Kakavelakis, G., Maksudov, T., Kymakis, E., and Stratakis, E.: Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl. Mater. Inter. 9, 4391043919 (2017).CrossRefGoogle ScholarPubMed
Ponseca, C.S. Jr, Hutter, E.M., Piatkowski, P., Cohen, B., Pascher, T., Douhal, A., Yartsev, A., Sundström, V., and Savenije, T.J.: Mechanism of charge transfer and recombination dynamics in organic metal halide perovskites and organic electrodes, PCBM, and spiro-OMeTAD: Role of dark carriers. J. Am. Chem. Soc. 137, 1604316048 (2015).CrossRefGoogle ScholarPubMed
O'Regan, B.C., Barnes, P.R.F., Li, X., Law, C., Palomares, E., and Marin-Beloqui, J.M.: Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J-V hysteresis. J. Am. Chem. Soc. 137, 50875099 (2015).CrossRefGoogle ScholarPubMed
Herz, L.M.: Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 6589 (2016).CrossRefGoogle ScholarPubMed
Ponseca, C.S. Jr, Savenije, T.J., Abdellah, M., Zheng, K., Yartsev, A., Pascher, T., Harlang, T., Chabera, P., Pullerits, T., Stepanov, A., Wolf, J., and Sundström, V.: Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 51895192 (2014).CrossRefGoogle ScholarPubMed
Lan, D.: The physics of ion migration in perovskite solar cells: Insights into hysteresis, device performance, and characterization. Prog. Photovoltaics 15 (2019).Google Scholar
Leijtens, T., Eperon, G.E., Barker, A.J., Grancini, G., Zhang, W., Ball, J.M., Kandada, A.R.S., Snaith, H.J., and Petrozza, A.: Carrier trapping and recombination: The role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energ. Environ. Sci. 9, 34723481 (2016).CrossRefGoogle Scholar
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., and You, J.: Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460466 (2019).CrossRefGoogle Scholar
Kim, H.S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N., and Bisquert, J.: Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 17 (2013).CrossRefGoogle ScholarPubMed
Kang, B. and Biswas, K.: Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3. Phys. Chem. Chem. Phys. 19, 2718427190 (2017).CrossRefGoogle Scholar
Khadka, D.B., Shirai, Y., Yanagida, M., and Miyano, K.: Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. J. Mater. Chem. C 6, 162170 (2018).CrossRefGoogle Scholar
Tress, W., Marinova, N., Inganäs, O., Nazeeruddin, M.K., Zakeeruddin, S.M., and Grätzel, M.: Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).CrossRefGoogle Scholar
Yuan, S., Wang, J., Yang, K., Wang, P., Zhang, X., Zhan, Y., and Zheng, L.: High efficiency MAPbI3-xClx perovskite solar cell via interfacial passivation. Nanoscale 10, 1890918914 (2018).CrossRefGoogle ScholarPubMed
Wolff, C.M., Caprioglio, P., Stolterfoht, M., and Neher, D.: Nonradiative recombination in perovskite solar cells: The role of interfaces. Adv. Mater. 31, 1902762 (2019).CrossRefGoogle ScholarPubMed
Yao, X., Zheng, L., Zhang, X., Xu, W., Hu, W., and Gong, X.: Efficient perovskite solar cells through suppressed nonradiative charge carrier recombination by a processing additive. ACS Appl. Mater. Inter. 11, 4016340171 (2019).CrossRefGoogle ScholarPubMed
Liu, P., Wang, W., Liu, S., Yang, H., and Shao, Z.: Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9, 1803017 (2019).CrossRefGoogle Scholar
Weber, S.A.L., Hermes, I.M., Turren-Cruz, S.H., Gort, C., Bergmann, V.W., Gilson, L., Hagfeldt, A., Grätzel, M., Tress, W., and Berger, R.: How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energ. Environ. Sci. 11, 24042413 (2018).CrossRefGoogle Scholar
Cao, J., Wu, B., Chen, R., Wu, Y., Hui, Y., Mao, B., and Zheng, N.: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: Effect of surface passivation. Adv. Mater. 30, 1705596 (2018).CrossRefGoogle ScholarPubMed
Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S., and Liu, S.: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 111 (2018).Google ScholarPubMed
Niu, T., Lu, J., Munir, R., Li, J., Barrit, D., Zhang, X., Hu, H., Yang, Z., Amassian, A., Zhao, K., and Liu, S.: Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, 1706576 (2018).CrossRefGoogle ScholarPubMed
Huang, J., Tan, S., Lund, P.D., and Zhou, H.: Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energ. Environ. Sci. 10, 22842311 (2017).CrossRefGoogle Scholar
You, J., Meng, L., Song, T.B., Guo, T., Yang, Y., Chang, W., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N.D., and Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75 (2016).CrossRefGoogle ScholarPubMed
Meggiolaro, D., Mosconi, E., and Angelis, F.D.: Mechanism of reversible trap passivation by molecular oxygen in lead-halide perovskites. ACS Energy Lett. 2, 27942798 (2017).CrossRefGoogle Scholar
Shin, S.S., Yeom, E.J., Yang, W.S., Hur, S., Kim, M.G., Im, J., Seo, J., Noh, J.H., and Seok Il, S.: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167171 (2017).CrossRefGoogle ScholarPubMed
Lee, D.S., Yun, J.S., Kim, J., Soufiani, A.M., Chen, S., Cho, Y., Deng, X., Seidel, J., Lim, S., Huang, S., and Ho-Baillie, A.W.Y.: Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells. ACS Energy Lett. 3, 647654 (2018).CrossRefGoogle Scholar
Lee, J.W., Kim, H.S., and Park, N.G.: Lewis acid-base adduct approach for high efficiency perovskite solar cells. Accounts Chem. Res. 49, 311319 (2016).CrossRefGoogle ScholarPubMed
Noel, N.K., Abate, A., Stranks, S.D., Parrott, E.S., Burlakov, V.M., Goriely, A., and Snaith, H.J.: Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 98159821 (2014).CrossRefGoogle ScholarPubMed
Jain, S.M., Qiu, Z., Häggman, L., Mirmohades, M., Johansson, M.B., Edvinsson, T., and Boschloo, G.: Frustrated Lewis pair-mediated recrystallization of CH3NH3PbI3 for improved optoelectronic quality and high voltage planar perovskite solar cells. Energ. Environ. Sci. 9, 37703782 (2016).CrossRefGoogle Scholar
Abate, A., Saliba, M., Hollman, D.J., Stranks, S.D., Wojciechowski, K., Avolio, R., Grancini, G., Petrozza, A., and Snaith, H.J.: Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 32473254 (2014).CrossRefGoogle ScholarPubMed
Zhang, H., Wu, Y., Shen, C., Li, E., Yan, C., Zhang, W., Tian, H., Han, L., and Zhu, W.: Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Adv. Energy Mater. 9, 1803573 (2019).CrossRefGoogle Scholar
deQuilettes, D.W., Koch, S., Burke, S., Paranji, R.K., Shropshire, A.J., Ziffer, M.E., and Ginger, D.S.: Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438444 (2016).CrossRefGoogle Scholar
Wang, F., Geng, W., Zhou, Y., Fang, H., Tong, C., Loi, M.A., Liu, L., and Zhao, N.: Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 99869992 (2016).CrossRefGoogle ScholarPubMed
Fang, H.H., Wang, F., Adjokatse, S., Zhao, N., Even, J., and Loi, M.A.: Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 5, e16056 ( (2016).CrossRefGoogle ScholarPubMed
Wu, W.Q., Yang, Z., Rudd, P.N., Shao, Y., Dai, X., Wei, H., Zhao, J., Fang, Y., Wang, Q., Liu, Y., Deng, Y., Xiao, X., Feng, Y., and Huang, J.: Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, eaav8925 (2019).CrossRefGoogle ScholarPubMed
Kim, M., Motti, S.G., Sorrentino, R., and Petrozza, A.: Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energ. Environ. Sci. 11, 26092619 (2018).CrossRefGoogle Scholar
Qin, P.L., Yang, G., Ren, Z., Cheung, S.H., So, S.K., Chen, L., Hao, J., Hou, J., and Li, G.: Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated lewis base polymer induced trap passivation and charge extraction. Adv. Mater. 30, 1706126 (2018).CrossRefGoogle ScholarPubMed
Zhang, F., Song, J., Hu, R., Xiang, Y., He, J., Hao, Y., Lian, J., Zhang, B., Zeng, P., and Qu, J.: Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells. Small 14, 1704007 (2018).CrossRefGoogle ScholarPubMed
Zhao, Y., Wei, J., Li, H., Yan, Y., Zhou, W., Yu, D., and Zhao, Q.: A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016).CrossRefGoogle ScholarPubMed
Kim, Y., Jung, E.H., Kim, G., Kim, D., Kim, B.J., and Seo, J.: Sequentially fluorinated PTAA polymers for enhancing V oc of high-performance perovskite solar cells. Adv. Energy Mater. 8, 1801668 (2018).CrossRefGoogle Scholar
Bi, D., Yi, C., Luo, J., Décoppet, J., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A., and Grätzel, M.: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 15 (2016).CrossRefGoogle Scholar
Peng, J., Khan, J.I., Liu, W., Ugur, E., Duong, T., Wu, Y., Shen, H., Wang, K., Dang, H., Aydin, E., Yang, X., Wan, Y., Weber, K.J., Catchpole, K.R., Laquai, F., Wolf, S.D., and White, T.P.: A universal double-side passivation for high open-circuit voltage in perovskite solar cells: Role of carbonyl groups in poly (methyl methacrylate). Adv. Energy Mater. 8, 1801208 (2018).CrossRefGoogle Scholar
Zhang, C.C., Li, M., Wang, Z.K., Jiang, Y., Liu, H., Yang, Y., Gao, X., and Ma, H.: Passivated perovskite crystallization and stability in organic–inorganic halide solar cells by doping a donor polymer. J. Mater. Chem. A 5, 25722579 (2017).CrossRefGoogle Scholar
Li, X., Chen, C.C., Cai, M., Hua, X., Xie, F., Liu, X., Hua, J., Long, Y., Tian, H., and Han, L.: Efficient passivation of hybrid perovskite solar cells using organic dyes with -COOH functional group. Adv. Energy Mater. 8, 1800715 (2018).CrossRefGoogle Scholar
Lin, C.T., De, R.F., Kim, J., Baker, J., Ngiam, J., Xu, B., Pont, S., Aristidou, N., Haque, S.A., Watson, T., McLachlan, M.A., and Durrant, J.R.: Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. J. Mater. Chem. A 7, 30063011 (2019).CrossRefGoogle Scholar
Lin, Y., Bai, Y., Fang, Y., Chen, Z., Yang, S., Zheng, X., Tang, S., Lin, Y., Bai, Y., Fang, Y., Liu, Z.Y., Zhao, J., and Huang, J.: Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654658 (2018).CrossRefGoogle ScholarPubMed
Cho, Y., Soufiani, A.M., Yun, J.S., Kim, J., Lee, D.S., Seidel, J., Deng, X., Green, M.A., Huang, S., and Ho-Baillie, A.W.Y.: Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 8, 1703392 (2018).CrossRefGoogle Scholar
Tsai, H., Nie, W., Blancon, J.C., Stoumpos, C.C., Asadpour, R., Harutyunyan, B., Neukirch, A.J., Verduzco, R., Crochet, J.J., Tretiak, S., Pedesseau, L., Even, J., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., and Mohite, A.D.: High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536, 312316 (2016).CrossRefGoogle ScholarPubMed
Lin, Y., Bai, Y., Fang, Y., Wang, Q., Deng, Y., and Huang, J.: Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 15711572 (2017).CrossRefGoogle Scholar
Yang, Z., Dou, J., and Wang, M.: Interface engineering in n-i-p metal halide perovskite solar cells. Solar RRL 2, 1800177 (2018).CrossRefGoogle Scholar
Li, P., Zhang, Y., Liang, C., Xing, G., Liu, X., Li, F., Liu, X., Hu, X., Shao, G., and Song, Y.: Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells. Adv. Mater. 30, 1805323 (2018).CrossRefGoogle ScholarPubMed
Chen, J., Lee, D., and Park, N.G.: Stabilizing the Ag electrode and reducing J-V hysteresis through suppression of iodide migration in perovskite solar cells. ACS Appl. Mater. Inter. 9, 3633836349 (2017).CrossRefGoogle ScholarPubMed
Li, C., Lv, X., Cao, J., and Tang, Y.: Tetra-ammonium zinc phthalocyanine to construct a graded 2D-3D perovskite interface for efficient and stable solar cells. Chin. J. Chem. 37, 3034 (2019).CrossRefGoogle Scholar
Zhou, Q., Liang, L., Hu, J., Cao, B., Yang, L., Wu, T., Li, X., Zhang, B., and Gao, P.: High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer. Adv. Energy Mater. 9, 1802595 (2019).CrossRefGoogle Scholar
Luo, W., Wu, C., Wang, D., Zhang, Y., Zhang, Z., Qi, X., Zhu, N., Guo, X., Qu, B., Xiao, L., and Chen, Z.: Efficient and stable perovskite solar cell with high open-circuit voltage by dimensional interface modification. ACS Appl. Mater. Inter. 11, 91499155 (2019).CrossRefGoogle ScholarPubMed
Gao, L., Spanopoulos, I., Ke, W., Huang, S., Hadar, I., Chen, L., Li, X., Yang, G., and Kanatzidis, M.G.: Improved environmental stability and solar cell efficiency of (MA,FA)PbI3 perovskite using a wide-band-gap 1D thiazolium lead iodide capping layer strategy. ACS Energy Lett. 4, 17631769 (2019).CrossRefGoogle Scholar
Xu, A.F., Liu, N., Xie, F., Song, T., Ma, Y., Zhang, P., Bai, Y., Li, Y., Chen, Q., and Xu, G.: Promoting thermodynamic and kinetic stabilities of FA-based perovskite by an in situ bilayer structure. Nano Lett. 20, 38643871 (2020).CrossRefGoogle Scholar
Fan, J., Ma, Y., Zhang, C., Liu, C., Li, W., Schropp, R.E.I., and Mai, Y.: Thermodynamically self-healing 1D-3D hybrid perovskite solar cells. Adv. Energy Mater. 8, 1703421 (2018).CrossRefGoogle Scholar
Yuan, Z., Zhou, C., Tian, Y., Shu, Y., Messier, J., Wang, J.C., van de Burgt, L.J., Kountouriotis, K., Xin, Y., Holt, E., Schanze, K., Clark, R., Siegrist, T., and Ma, B.: One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).CrossRefGoogle ScholarPubMed
Zhou, C., Tian, Y., Wang, M., Rose, A., Besara, T., Doyle, N.K., Yuan, Z., Wang, J.C., Clark, R., Hu, Y., Siegrist, T., Lin, S., and Ma, B.: Low dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 56, 90189022 (2017).CrossRefGoogle ScholarPubMed
Yang, J., Liu, C., Cai, C., Hu, X., Huang, Z., Duan, X., Meng, X., Yuan, Z., Tan, L., and Chen, Y.: High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9, 1900198 (2019).CrossRefGoogle Scholar
Fakharuddin, A., Schmidt-Mende, L., Garcia-Belmonte, G., Jose, R., and Mora-Sero, I.: Interfaces in perovskite solar cells. Adv. Energy Mater. 7, 1700623 (2017).CrossRefGoogle Scholar
Yang, G., Lei, H., Tao, H., Zheng, X., Ma, J., Liu, Q., Ke, W., Chen, Z., Xiong, L., Qin, P., Chen, Z., Qin, M., Lu, X., Yan, Y., and Fang, G.: Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13, 1601769 (2017).CrossRefGoogle ScholarPubMed
Jiang, H., Jiang, G., Xing, W., Xiong, W., Zhang, X., Wang, B., Zhang, H., and Zheng, Y.: High current density and low hysteresis effect of planar perovskite solar cells via PCBM-doping and interfacial improvement. ACS Appl. Mater. Inter. 10, 2995429964 (2018).CrossRefGoogle ScholarPubMed
Sidhik, S., Panikar, S.S., Párez, C.R., Luke, T.L., Carriles, R., Carrera, S.C., and Rosa, E.D.l.: Interfacial engineering of TiO2 by graphene nanoplatelets for high-efficiency hysteresis-free perovskite solar cells. ACS Sustain. Chem. Eng. 6, 1539115401 (2018).CrossRefGoogle Scholar
Wang, P., Wang, J., Zhang, X., Wang, H., Cui, X., Yuan, S., Lu, H., Tu, L., Zhan, Y., and Zheng, L.: Boosting the performance of perovskite solar cells through a novel active passivation method. J. Mater. Chem. A 6, 1585315858 (2018).CrossRefGoogle Scholar
Li, W., Zhang, W., Reenen, V.S., Sutton, R.J., Fan, J., Haghighirad, A.A., Johnston, M.B., Wang, L., and Snaith, H.J.: Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energ. Environ. Sci. 9, 490498 (2016).CrossRefGoogle Scholar
Hou, X., Zhou, J., Huang, S., Ou-Yang, W., Pan, L., and Chen, X.: Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution. Chem. Eng. J. 330, 947955 (2017).CrossRefGoogle Scholar
Tan, H., Jain, A., Voznyy, O., Lan, X., Arquer, F.P.G.d., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L.N., Zhao, Y., Lu, Z., Yang, Z., Hoogland, S., and Sargent, E.H.: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722726 (2017).CrossRefGoogle ScholarPubMed
You, S., Wang, H., Bi, S., Zhou, J., Qin, L., Qiu, X., Zhao, Z., Xu, Y., Zhang, Y., Shi, X., Zhou, H., and Tang, Z.: A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater. 30, 1706924 (2018).CrossRefGoogle ScholarPubMed
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., and Hayase, S.: All-solid perovskite solar cells with HOCO-R-NH3+ I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118, 1665116659 (2014).CrossRefGoogle Scholar
Yang, G., Wang, C., Lei, H., Zheng, X., Qin, P., Xiong, L., Zhao, X., Yan, Y., and Fang, G.: Interface engineering in planar perovskite solar cells: Energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 5, 16581666 (2017).CrossRefGoogle Scholar
Wang, Z., Kamarudin, M.A., Huey, N.C., Yang, F., Pandey, M., Kapil, G., Ma, T., and Hayase, S.: Interfacial sulfur functionalization anchoring SnO2 and CH3NH3PbI3 for enhanced stability and trap passivation in perovskite solar cells. ChemSusChem 11, 39413948 (2018).CrossRefGoogle Scholar
Peng, J., Wu, Y., Ye, W., Jacobs, D.A., Shen, H., Fu, X., Wan, Y., Duong, T., Wu, N., Barugkin, C., Nguyen, H.T., Zhong, D., Li, J., Lu, T., Liu, Y., Lockrey, M.N., Weber, K.J., Catchpole, K.R., and White, T.P.: Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energ. Environ. Sci. 10, 17921800 (2017).CrossRefGoogle Scholar
Kong, W., Ding, T., Bi, G., and Wu, H.: Optical characterizations of the surface states in hybrid lead–halide perovskites. Phys. Chem. Chem. Phys. 18, 1262612632 (2016).CrossRefGoogle ScholarPubMed
Yu, H., Lu, H., Xie, F., Zhou, S., and Zhao, N.: Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv. Funct. Mater. 26, 14111419 (2016).CrossRefGoogle Scholar
Zheng, X., Troughton, J., Gasparini, N., Lin, Y., Wei, M., Hou, Y., Liu, J., Song, K., Chen, Z., Yang, C., Turedi, B., Alsalloum, A.Y., Pan, J., Chen, J., Zhumekenov, A.A., Anthopoulos, T.D., Han, Y., Baran, D., Mohammed, O.F., Sargent, E.H., and Bakr, O.M.: Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule 3, 19631976 (2019).CrossRefGoogle Scholar
Godding, J.S.W., Ramadan, A.J., Lin, Y., Schutt, K., Snaith, H.J., and Wenger, B.: Oxidative passivation of metal halide perovskites. Joule 3, 27162731 (2019).CrossRefGoogle Scholar
Yang, S., Chen, S., Mosconi, E., Fang, Y., Xiao, X., Wang, C., Zhou, Y., Yu, Z., Zhao, J., Gao, Y., Angelis, F.D., and Huang, J.: Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473478 (2019).CrossRefGoogle ScholarPubMed
Tait, J.G., Manghooli, S., Qiu, W., Rakocevic, L., Kootstra, L., Jaysankar, M., Masse, C.A., Huerta, D., Paetzold, U.W., Gehlhaar, R., Cheyns, D., Heremans, P., and Poortmans, J.: Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J. Mater. Chem. A 4, 37923797 (2016).CrossRefGoogle Scholar