Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T02:29:41.524Z Has data issue: false hasContentIssue false

Interpretation of mercury porosimetry applied to aerogels

Published online by Cambridge University Press:  03 March 2011

R. Pirard
Affiliation:
Université de Liège, Laboratories de Génie Chimique et d'Etude Physique des Matériaux, Institut de Chimie au Sart Tilman, batiment B6, B-4000 Liège. Belgium
S. Blacher
Affiliation:
Université de Liège, Laboratories de Génie Chimique et d'Etude Physique des Matériaux, Institut de Chimie au Sart Tilman, batiment B6, B-4000 Liège. Belgium
F. Brouers
Affiliation:
Université de Liège, Laboratories de Génie Chimique et d'Etude Physique des Matériaux, Institut de Chimie au Sart Tilman, batiment B6, B-4000 Liège. Belgium
J.P. Pirard
Affiliation:
Université de Liège, Laboratories de Génie Chimique et d'Etude Physique des Matériaux, Institut de Chimie au Sart Tilman, batiment B6, B-4000 Liège. Belgium
Get access

Abstract

The observation of aerogels submitted to a pressure of mercury indicates that this porous material is compacted and not intruded by the mercury. Consequently, the classical Washburn equation cannot be applied. A relation is established between the pressure P of compaction and the size L of the largest pores. The size of pores is estimated by using the nitrogen adsorption-desorption isotherms analysis and SEM measurements. A relation is found in which P is proportional to L−4 The new relation is applied to mercury porosimetry. Finally, a mechanical model is proposed that reproduces successfully the behavior of aerogels under high pressure of mercury.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fricke, J., in Aerogels, Proc. 1st Int. Symp., Würzburg, 23–25 Sept. 1985, edited by Fricke, J. (Springer-Berlin, 1986), p. 13.Google Scholar
2Broeker, F. J., Heckmann, W., Fischer, F., Mielke, M., Schoeder, J., and Stange, A., in Aerogels, Proc. 1st Int. Symp., Würzburg, 23–25 Sept. 1985, edited by Fricke, J. (Springer-Berlin, 1986), p. 60.Google Scholar
3Lecloux, A. J., in Catalysis Science and Technology, edited by Anderson, J. R. and Boudart, M. (Springer-Berlin, 1981), Vol. 2, p. 171.Google Scholar
4Brunauer, S., Deming, L. S., Deming, W. S., and Teller, E., J. Am.Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
5Broekhoff, J. C. P. and de Boer, J.H., J. Catal. 9, 8 (1967).CrossRefGoogle Scholar
6Broekhoff, J. C. P. and de Boer, J. H., J. Catal. 10, 153 (1968).Google Scholar
7Broekhoff, J. C.P. and de Boer, J.H., J. Catal. 10, 368 (1968).Google Scholar
8Brinker, C. J. and Scherer, G. W., in Sol-Gel Science; The Physics and Chemistry of Sol Gel Processing (Academic Press, San Diego, CA, 1989), p. 526.Google Scholar