Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T19:19:49.979Z Has data issue: false hasContentIssue false

Ion beam sputter deposition of YBa2Cu3O7−δ thin films

Published online by Cambridge University Press:  03 March 2011

B.J. Kellett*
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
J.H. James
Affiliation:
Oxford Instruments, Research Instruments, Units 4&5 Orwell Furlong, Cambridge, CB4 4WY, United Kingdom
*
a)Address correspondence to this author.
Get access

Abstract

This article addresses issues associated with in situ growth of superconducting YBa2Cu3O7−δ thin films by ion beam sputtering. High oxygen partial pressure during ion beam deposition can cause significant beam broadening and oxidation of filaments and grids. Also, many of the targets used for processing YBCO are unstable when sputtered in a high oxygen partial pressure. It is shown that ion beam sputtering can produce YBCO films of comparable quality to those produced by laser ablation or dc magnetron sputtering. Typical film properties are Tco = 91 K and Jc (77 K) = 106 A cm−2. It appears that the oxygen gas pressure during the postdeposition cooldown has a more important influence on film properties than the oxygen partial pressure during deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hammond, R. H., Phys. Today 41 (1), S69–70 (1988).Google Scholar
2Superconductor Technologies, 460 Ward Drive, Suite F, Santa Barbara, CA 93111–2310.Google Scholar
3Conductus, 960 Maude Ave., Sunnyvale, CA 94086.Google Scholar
4Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K., and Fueki, K., JJAP 26 (7), 1122811230 (1987).CrossRefGoogle Scholar
5Hammond, R. H. and Bormann, R., Phys. C 162–164, 703704 (1989).CrossRefGoogle Scholar
6Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, I. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36 (7), 36083616 (1987).CrossRefGoogle Scholar
7Bormann, R. and Nolting, J., Appl. Phys. Lett. 54 (21), 21482150 (1989).CrossRefGoogle Scholar
8Humphreys, R. G., Chew, N. G., Edwards, J. A., Satchell, J. S., Goodyear, S. W., and Blenkinsop, S. E., LT-19 Satellite Conference on High Temperature Superconductors, Cambridge, August 13–15, 1990.Google Scholar
9Thornton, J. A., Ann. Rev. Mater. Sci. 239 (1977).CrossRefGoogle Scholar
10Koren, G., Gupta, A., Baseman, R. J., Lutwyche, M. I., and Laibowitz, R. B., Appl. Phys. Lett. 55, 24502452 (1989).CrossRefGoogle Scholar
11Poppe, U., Solid State Commun. 66, 661665 (1988).CrossRefGoogle Scholar
12Xi, X. X., Venkatesan, T., Li, Q., Wu, X. D., Inam, A., Chang, C. C., Ramesh, R., Hwang, D. M., Ravi, T. S., Findikoglu, A., Hemmick, D., Etemad, S., Martinez, J. A., and Wilkens, B., IEEE Trans. Mag. 27, 982989 (1991).CrossRefGoogle Scholar
13Berkley, D. D., Johnson, B. R., Anand, N., Beauchamp, K. M., Conroy, L. E., Goldman, A. M., Maps, J., Mauersberger, K., Mecartney, M. L., Morton, J., Tuominen, M., and Zhang, Y-J., Appl. Phys. Lett. 53 (20), 1973 (1988).CrossRefGoogle Scholar
14Michel, S., James, J. H., Dwir, B., Affronte, M., Kellett, B., and Pavuna, D., J. Less-Comm. Met. 151, 419 (1989).CrossRefGoogle Scholar
15Metzger, G. and Fleddermann, C. B., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Borgesen, P., and Zuhr, R. A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 623.Google Scholar
16Humphreys, R. G., Satchell, J. S., Chew, N. G., Edwards, J. A., Goodyear, S. W., Blenkinsop, S. E., Dosser, O. D., and Cullis, A. G., Supercon. Sci. Technol. 3, 38 (1990).CrossRefGoogle Scholar
17Humphreys, R. G., Chew, N. G., Edwards, J. A., Satchell, J. S., Goodyear, S. W., and Blenkinsop, S. E., LT-19 Satellite Conference on High Temperature Superconductors, Cambridge, August 13–15, 1990.Google Scholar
18Oxford Instruments, Old Station Way, Eynsham Oxon, OX8-1TL United Kingdom.Google Scholar
19Kobrin, P. H., DeNatale, J. F., Housley, R. M., Flintoff, J. F., and Harker, A. B., Adv. Ceram. Mater. 2, 430 (1987).CrossRefGoogle Scholar
20Hebard, A. F., Eick, R. H., Fiory, A. T., White, A. E., and Short, K. T., TMS Proc. 4th Annual 1988 Northeast Regional Meeting, Processing and Applications of High-Tc Superconductors, The Metallurgical Society, AIME (1989).Google Scholar
21Fujita, J., Yoshitake, T., Kamijo, A., Satoh, T., and Igarashi, H., J. Appl. Phys. 64, 1292 (1988).CrossRefGoogle Scholar
22Klein, J. D., Yen, A., and Clauson, S. L., Appl. Phys. Lett. 56, 394 (1990).CrossRefGoogle Scholar
23Gauzzi, A., Lucia, M. L., Kellett, B. J., James, J. H., and Pavuna, D., Physica C 182, 5761 (1991).CrossRefGoogle Scholar
24Commonwealth Scientific Corporation, Alexandria, VA.Google Scholar
25James, J. H., Kellett, B. J., Gauzzi, A., Dwir, B., and Pavuna, D., Appl. Surf. Sci. 43, 393397 (1989).CrossRefGoogle Scholar
26Kaufman, H. R. and Robinson, R. S., Operation of Broad-Beam Sources (Commonwealth Scientific Corporation, 500 Pendleton St., Alexandria, VA, 1987), p. 161.Google Scholar
27Oxford Plasma Technology Ltd., North End, Yatton, Bristol, BS19 4AP, United Kingdom.Google Scholar
28Pavuna, D., Baer, W., Berger, H., Gasparov, V., Schmidt, M., Vasey, F., and Reinhart, F. K., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H.L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 681.Google Scholar
29Terada, N., Ihara, H., Jo, M., Hirabayashi, M., Kinura, Y., Matsutani, K., Kirata, K., Ohno, E., Sugise, R., and Kawashima, F., Jpn. J. Appl. Phys. 27, L639L642 (1988).CrossRefGoogle Scholar
30Gauzzi, A., Mathieu, H. J., James, J. H., and Kellett, B., Vacuum 41 (4–6), 870974 (1990).CrossRefGoogle Scholar