Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T03:43:43.721Z Has data issue: false hasContentIssue false

Laser synthesis and crystallographic characterization of ultrafine SiC powders

Published online by Cambridge University Press:  31 January 2011

R. Fantoni
Affiliation:
ENEA, Dip. TIB, U.S. Fis. Appl., CRE Frascati, C.P. 65, I-00044 Frascati, Roma, Italy
E. Borsella
Affiliation:
ENEA, Dip. TIB, U.S. Fis. Appl., CRE Frascati, C.P. 65, I-00044 Frascati, Roma, Italy
S. Piccirillo
Affiliation:
ENEA guest
R. Ceccato
Affiliation:
ENEA and Università di Venezia guest
S. Enzo
Affiliation:
Dipartimento di Chimica Fisica, D.D. 2137, 1-30123 Venezia, Italy
Get access

Abstract

High purity, ultrafine SiC powders have been produced from gas phase reactants (SiH4, C2H2) in a CO2 laser induced process. The flow reactor designed to operate with a medium power (10–50 W) continuous wave CO2 laser source is described. The mechanism of gas phase reactions involved has been investigated by means of on-line optical diagnostics. Powders produced have been characterized by means of conventional chemical and spectroscopic methods. The x-ray results point out a growth mechanism by coalescence; i.e., whole islands move in the flame to take part in binary collisions, analogously to that observed for particles produced by inert gas evaporation.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mater. Res. Soc. Proc, edited by Brinker, C. J., Clark, D. E., and Urlich, D. R. (Elsevier, New York, 1984), Vol. 32.Google Scholar
2 Lyman, J. L., in Laser Spectroscopy and its Applications, edited by Radziemsky, L. J., Solars, R.W., and Paisner, J. A. (Marcel Dekker, Inc., New York, 1987), pp. 417505.Google Scholar
3 Giardini-Guidoni, A., Borsella, E., and Fantoni, R.: Ber. Bunsenges. Phys. Chem. 89, 286 (1985).CrossRefGoogle Scholar
4 Snels, M., Larciprete, R., Fantoni, R., Borsella, E., and Giardini-Guidoni, A., Chem. Phys. Lett. 122, 480 (1985).CrossRefGoogle Scholar
5 Borsella, E., Fantoni, R., and Caneve, L., in Photon Beam and Plasma Enhanced Processing, edited by A. Golansky, V.T. Nguyen, and F. Krimmel (Les Editions des Physique, Les Ulis, 1987), pp. 205211; E. Borsella and R. Fantoni, Chem. Phys. Lett. 150, 542 (1988).Google Scholar
6 Cannon, R.W., Danforth, S.C., Flint, J.H., Haggerty, J.S., and Marne, R.A., J. Am. Ceram. Soc. 65, 324 (1981); F. Curcio, G. Ghiglione, M. Musci, and C. Nannetti, Appl. Surf. Sci. 36 (1989).CrossRefGoogle Scholar
7 Vonk, C. G., J. Appl. Cryst. 9, 433 (1976).CrossRefGoogle Scholar
8 Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S., J. Appl. Cryst. 21, 536 (1988).CrossRefGoogle Scholar
9 McAdams, W. H., Heat Transmission (McGraw-Hill, New York, 1954), p. 477.Google Scholar
10 Cauchetier, M., Croix, O., and Luce, M., Adv. Ceram. Mater. 3,548 (1988).CrossRefGoogle Scholar
11 Borsella, E., Caneve, L., Fantoni, R., Piccirillo, S., Basili, N., and Enzo, S., Appl. Surf. Sci. 36, 213 (1989).CrossRefGoogle Scholar
12 Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
13 Cocco, G., Schiffini, L., Strukul, G., and Carturan, G., J. Catal. 65, 348 (1980).CrossRefGoogle Scholar
14 Granqvist, C.G. and Buhrman, R.A., J. Catal. 42, 477 (1976).CrossRefGoogle Scholar
15 Page, R. A., J. Appl. Cryst. 21, 795 (1988).CrossRefGoogle Scholar
16 Sawano, K., Haggerty, J. S., and Bowen, K. K., Yogyo-Kyokai-Shi 95, 64 (1987).CrossRefGoogle Scholar