Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T03:49:25.888Z Has data issue: false hasContentIssue false

Layered microdomains and columnar grains in epitaxial La0.7Ca0.3MnO3 films and Y0.7Ca0.3MnO3/La0.7Ca0.3MnO3 multilayers

Published online by Cambridge University Press:  31 January 2011

C. J. Lu
Affiliation:
Beijing Laboratory of Electron Microscopy, Center of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, People's Republic of China
Z. L. Wang
Affiliation:
Beijing Laboratory of Electron Microscopy, Center of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, People's Republic of China
G. C. Xiong
Affiliation:
National Mesocopic Physics State Key Laboratory and Department of Physics, Peking University, 100871 Beijing, People's Republic of China
G. J. Lian
Affiliation:
National Mesocopic Physics State Key Laboratory and Department of Physics, Peking University, 100871 Beijing, People's Republic of China
Get access

Abstract

Epitaxial La0.7Ca0.3MnO3 thin film and [Y0.7Ca0.3MnO3/La0.7Ca0.3MnO3]10 multilayers of about 140 nm in thickness were grown by pulsed laser deposition on (001)LaAlO3. Their microstructures were investigated by transmission electron microscopy and associated techniques. It was found that both the film and the multilayers contain an almost defect-free layer near the substrate, followed by columnar grain grown. The columns were separated by strained regions in the top layer. No interfacial dislocations were observed at either of the La0.7Ca0.3MnO3/LaAlO3 or the Y0.7Ca0.3MnO3/La0.7Ca0.3MnO3 interfaces. Interestingly, both the epitaxial film and the multilayers exhibited layered crystallographic domains. The formation mechanisms of the layered domain structures observed are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tavares, P.B., Amaral, V.S., Araujo, J.P., Sousa, J.B., Lourenco, A.A.C.S, and Vieira, J.M., J. Appl. Phys. 85, 5411 (1999).Google Scholar
2.Thomas, K.A., de Silva, P.S.I.P.N., Cohen, J.F., Hossain, A., Rajeswari, M., Venkatesan, T., Hishes, R., and MacManus-Driscoll, J.L., J. Appl. Phys. 84, 3939 (1998).Google Scholar
3.Vlakhov, E.S., Chakalov, R.A., Chakalova, R.I., Nenkov, K.A., Dorr, K., Handstein, A., and Muller, K.-H., J. Appl. Phys. 83, 2152 (1998).Google Scholar
4.Suzuki, Y., Hwang, H.Y., Cheong, S.-W., and van Dover, R.B., Appl. Phys. Lett. 71, 140 (1997).Google Scholar
5.Sun, J.Z., Gallagher, W.J., Duncombe, P.R., Krusin-Elbaum, L., Altman, R.A., Gupta, A., Lu, Y., Gong, G.Q., and Xiao, G., Appl. Phys. Lett. 69, 3266 (1996).Google Scholar
6.Lu, Yu, Li, X.W., Gong, G.Q., Xiao, G., Gupta, A., Lecoeur, P., Sun, J.Z., Wang, Y.Y., and Dravid, V.P., Phys. Rev. B 54, R8357 (1996).Google Scholar
7.Kwon, C., Jia, Q.X., Fan, Y., Hundley, M.F., Reagor, D.W., Coulter, J.Y., and Peterson, D.E., Appl. Phys. Lett. 72, 486 (1998).Google Scholar
8.Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., and Sun, J.Z., Phys. Rev. B 54, R15629 (1996).Google Scholar
9.Li, X.W., Gupta, A., Xiao, G., and Gong, G.Q., Appl. Phys. Lett. 71, 1124 (1997).Google Scholar
10.Shreekala, R., Rajeswari, M., Ghosh, K., Goyal, A., Gu, J.Y., Kwon, C., Trajanovic, Z., Boettcher, T., Greene, R.L., Ramesh, R., and Venkateson, T., Appl. Phys. Lett. 71, 282 (1997).Google Scholar
11.Walter, T., Dörr, K., Müller, K.-H., Holzapfel, B., Eckert, D., Wolf, M., Schläfer, D., Schultz, L., R., and Grötzschel, , Appl. Phys. Lett. 74, 2218 (1999).Google Scholar
12.Peng, H.B., Zhao, B.R., Xie, Z., Lin, Y., Zhu, B.Y., Hao, Z., Ni, Y.M., Tao, H.J., Dong, X.L., and Xu, B., Appl. Phys. Lett. 74, 1606 (1999).Google Scholar
13.Mathur, N.D., Burnell, G., Isaac, S.P., Jackson, T.J., Teo, B.-S., MacManus-Driscoll, J.L., Cohen, L.F., Evetts, J.E., and Blamire, M.G., Nature 387, 266 (1997).Google Scholar
14.Srinitiwarawong, C. and Ziese, M., Appl. Phys. Lett. 73, 1140 (1998).Google Scholar
15.Wang, H.Y., Cheong, S-W., and Batlogg, B., Appl. Phys. Lett. 68, 3494 (1996).Google Scholar
16.Hwang, H.Y., Cheong, S.W., Radaelli, P.G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914 (1995).Google Scholar
17.Ibarra, M.R., Algarabel, P.A., Marquina, C., Basco, J., and Garcia, J., Phys. Rev. Lett. 75, 3541 (1995).Google Scholar
18.Kown, C.K., Robson, M.C., Kim, K.-C., Gu, J.Y., Lofland, S.E., Bhagat, S.M., Trajanovic, Z., Rajeswari, M., Venkatesan, T., Kratz, A.R., Gomez, R.D., and Ramesh, R., J. Magn. Magn. Mater. 172, 229 (1997).Google Scholar
19.Koo, T.Y., Park, S.H., Lee, K.B., and Jeong, Y.H., Appl. Phys. Lett. 71, 977 (1997).Google Scholar
20.Rao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., and Tsui, F., Appl. Phys. Lett. 73, 3294 (1998).Google Scholar
21.O'Donnell, J., Rzchowski, M.S., Eckstein, J.N., and Bozovic, I., Appl. Phys. Lett. 72, 1775 (1998).Google Scholar
22.Wang, H.S. and Li, Q., Appl. Phys. Lett. 73, 2360 (1998).Google Scholar
23.Wang, H.S., Li, Q., Liu, K., and Chien, C.L., Appl. Phys. Lett. 74, 2212 (1999).Google Scholar
24.Lian, G.J., Wang, Z.H., Gao, J., Kang, J.K., Li, M.Y., and Xiong, G.C., J. Phys. D: Appl. Phys. 32, 90 (1999).Google Scholar
25.Wang, H.S., Li, Q., Liu, K., and Chen, C.L., Appl. Phys. Lett. 74, 2212 (1999).Google Scholar
26.Aarts, J., Freisem, S., Hendrikx, R., and Zandbergern, H.W., Appl. Phys. Lett. 72, 2975 (1998).Google Scholar
27.Benaissa, M., Krishnan, K.M., Fullerton, E.E., and Jiang, J.S., IEEE Trans. Magn. 34, 1204 (1998).Google Scholar
28.Gong, G.Q., Gupta, A., Xiao, G., Lecoeur, P., and McGuire, T.R., Phys. Rev. B 54, R3742 (1996).Google Scholar
29.Kwon, C., Kim, K-C., Robson, M.C., Gu, J.Y., Rajeswari, M., and Venkatesan, T., J. Appl. Phys. 81, 4950 (1997).Google Scholar
30.Sahana, M., Hegde, M.S., Prasad, V., and Subramanyam, S.V., J. Appl. Phys. 85, 1058 (1999).Google Scholar
31.Xiong, G.C., Wang, Z.H., Lian, G.J., Dai, D.S., and Gan, Z.Z., J. Phys.: Condens. Matter 11, 3187 (1999).Google Scholar
32.Sundar Manoharan, S., Satyalasksmi, K.M., Prasad, V., Subramanyam, S.V., and Hegde, M.S., Curr. Sci. 69, 356 (1995).Google Scholar
33.Xiong, G.C., Li, Q., Ju, H.L., Xi, X.X., Greene, R.L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995).Google Scholar
34.Lebedev, O.I., Van Tendeloo, G., Amelinckx, S., Leibold, B., and Habermeier, H-U., Phys. Rev. B 58, 8065 (1998).Google Scholar
35.Geller, S. and Bala, V.B., Acta Crystallogr. 9, 1019 (1956).Google Scholar
36.Jiang, J.C., Tian, W., Pan, X.Q., Gan, Q., and Eom, C.B., Appl. Phys. Lett. 72, 2963 (1998).Google Scholar
37.Lebedev, O.I., Van Tendeloo, G., Amelinckx, S., Ju, H.L., and Krishnan, K., Philos. Mag. A 80, 673 (2000).Google Scholar
38.Gommert, E., Cerva, H., Rucki, A., von Helmolt, R., Wecker, J., Kuhrt, C., and Samwer, K., J. Appl. Phys. 81, 5496 (1997).Google Scholar
39.Lu, P., Chu, F., Jia, Q.X., and Mitchell, T.E., J. Mater. Res. 13, 2302 (1998).Google Scholar
40.Lu, C.J., Wang, Z.L., Kwon, C., and Jia, Q.X., J. Appl. Phys. (2000, in press).Google Scholar
41.Li, T.-W. [private communication, cited in the paper published at Appl. Phys. Lett. 74, 1615 (1999)].Google Scholar
42.Gan, Q., Rao, R.A., and Eom, C.B., Appl. Phys. Lett. 70, 1962 (1997).Google Scholar
43.Wu, Y., Suzuki, Y., Rüdiger, U., Yu, J., Kent, A.D., Nath, T.K., and Eom, C.B., Appl. Phys. Lett. 75, 2295 (1999).Google Scholar