Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T01:13:15.171Z Has data issue: false hasContentIssue false

Liquid crystalline assembly of nanocylinders

Published online by Cambridge University Press:  28 January 2011

Virginia A. Davis*
Affiliation:
Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849
*
a)Address all correspondence to this author. e-mail: davisva@auburn.edu
Get access

Abstract

Controlled bottom-up assembly of nanocylinders (e.g., nanotubes, nanorods, nanowires) into large area aligned arrays is widely recognized as a key obstacle impeding application development. Processing of lyotropic liquid crystal phases is a promising route for overcoming this obstacle, but nanocylinder liquid crystalline science is a nascent field that tends to be fractionated based on material type. This review explores the common challenges and achievements of nanocylinder liquid crystal research by focusing on three types of systems: (i) carbon nanotubes, (ii) inorganic nanocylinders, and (iii) cellulose nanocrystals.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ko, H. and Tsukruk, V.V.: Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. Nano Lett. 6(7), 1443 (2006).CrossRefGoogle ScholarPubMed
2.Duan, X.F.: Assembled semiconductor nanowire thin films for high- performance flexible macroelectronics. MRS Bull. 32, 134 (2007).CrossRefGoogle Scholar
3.Murphy, C.J., San, T.K., Gole, A.M., Orendorff, C.J., Gao, J.X., Gou, L., Hunyadi, S.E., and Li, T.: Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109(29), 13857 (2005).CrossRefGoogle ScholarPubMed
4.Sau, T.K. and Murphy, C.J.: Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21(7), 2923 (2005).CrossRefGoogle ScholarPubMed
5.Orendorff, C.J., Hankins, P.L., and Murphy, C.J.: pH-triggered assembly of gold nanorods. Langmuir 21(5), 2022 (2005).CrossRefGoogle ScholarPubMed
6.Lee, S.W., Lee, S.K., and Belcher, A.M.: Virus-based alignment of inorganic, organic, and biological nanosized materials. Adv. Mater. 15(9), 689 (2003).CrossRefGoogle Scholar
7.Lee, S.W., Wood, B.M., and Belcher, A.M.: Chiral smectic C structures of virus-based films. Langmuir 19(5), 1592 (2003).CrossRefGoogle Scholar
8.Li, L.S. and Alivisatos, A.P.: Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 15(5), 408 (2003).CrossRefGoogle Scholar
9.Li, L.S., Marjanska, M., Park, G.H.J., Pines, A., and Alivisatos, A.P.: Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. J. Chem. Phys. 120(3), 1149 (2004).CrossRefGoogle ScholarPubMed
10.Li, L.S., Walda, J., Manna, L., and Alivisatos, A.P.: Semiconductor nanorod liquid crystals. Nano Lett. 2(6), 557 (2002).CrossRefGoogle Scholar
11.Vigolo, B., Poulin, P., Lucas, M., Launois, P., and Bernier, P.: Improved structure and properties of single-wall carbon nanotube spun fibers. Appl. Phys. Lett. 81(7), 1210 (2002).CrossRefGoogle Scholar
12.Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., and Poulin, P.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331 (2000).CrossRefGoogle ScholarPubMed
13.Poulin, P., Vigolo, B., Penicaud, A., and Coulon, C.: Method for Obtaining Macroscopic Fibres and Strips from Colloidal Particles and in Particular Carbon Nanotubes. US Patent 7,655,164, 2010.Google Scholar
14.Poulin, P., Vigolo, B., and Launois, P.: Films and fibers of oriented single wall nanotubes. Carbon 40(10), 1741 (2002).CrossRefGoogle Scholar
15.Li, Y.L., Kinloch, I.A., and Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276 (2004).CrossRefGoogle ScholarPubMed
16.Baughman, R.H., Zakhidov, A.A., and de Heer, W.A.: Carbon nanotubes—The route toward applications. Science 297(5582), 787 (2002).CrossRefGoogle ScholarPubMed
17.Dalton, A., Ericson, L.M., Munoz, E., Ramesh, S., Ebron, V.H., Mudigonda, D., Collins, S., Saini, R., Davis, V.A., Ferraris, J., Pasquali, M., Hauge, R.H., Smalley, R.E., and Baughman, R.H.: Multifunctional carbon nanotube composites for energy harvesting and mechanical actuation, in Proceedings of the APS March Annual Meeting (2003).Google Scholar
18.Dalton, A.B., Collins, S., Razal, J., Munoz, E., Ebron, V.H., Kim, B.G., Coleman, J.N., Ferraris, J.P., and Baughman, R.H.: Continuous carbon nanotube composite fibers: Properties, potential applications, and problems. J. Mater. Chem. 14(1), 1 (2004).CrossRefGoogle Scholar
19.Coleman, J.N., Blau, W.J., Dalton, A.B., Munoz, E., Collins, S., Kim, B.G., Razal, J., Selvidge, M., Vieiro, G., and Baughman, R.H.: Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl. Phys. Lett. 82(11), 1682 (2003).CrossRefGoogle Scholar
20.Baughman, R.H.: Materials science—Muscles made from metal. Science 300(5617), 268 (2003).CrossRefGoogle ScholarPubMed
21.Kozlov, M.E., Capps, R.C., Sampson, W.M., Ebron, V.H., Ferraris, J.P., and Baughman, R.H.: Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 17(5), 614 (2005).CrossRefGoogle Scholar
22.Sreekumar, T.V., Liu, T., Kumar, S., Ericson, L.M., Hauge, R.H., and Smalley, R.E.: Single-wall carbon nanotube films. Chem. Mater. 15(1), 175 (2003).CrossRefGoogle Scholar
23.Ericson, L., Fan, H., Peng, H., Davis, V., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A., Kim, M., Ramesh, S., Saini, R., Kittrell, C., Lavin, G., Schmidt, H., Adams, W., Billups, W., Pasquali, M., Hwang, W., Hauge, R., Fischer, J., and Smalley, R.: Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447 (2004).CrossRefGoogle ScholarPubMed
24.Davis, V.A., Ericson, L.M., Parra-Vasquez, A.N., Fan, H., Wang, Y., Prieto, V., Longoria, J.A., Ramesh, S., Saini, R., Kittrell, C., Billups, W.E., Adams, W.W., Hauge, R.H., Smalley, R.E., and Pasquali, M.: Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1), 154 (2004).CrossRefGoogle Scholar
25.JCT Coatings Tech: U.S. paint and coatings industry continues to rebound. http://goliath.ecnext.com/coms2/gi_0199-7199545/U-S-paint-and-coatings.html (2007).Google Scholar
26.Green, M.J., Behabtu, N., Pasquali, M., and Adams, W.W.: Nanotubes as polymers. Polymer (Guildf.) 50(21), 4979 (2009).CrossRefGoogle Scholar
27.Davidson, P., Batail, P., Gabriel, J.C.P., Livage, J., Sanchez, C., and Bourgaux, C.: Mineral liquid-crystalline polymers. Prog. Polym. Sci. 22(5), 913 (1997).CrossRefGoogle Scholar
28.Solomon, M.J. and Spicer, P.T.: Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7), 13911400.CrossRefGoogle Scholar
29.Dogic, Z., Purdy, K.R., Grelet, E., Adams, M., and Fraden, S.: Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer dextran. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 69(5), 051702 (2004).CrossRefGoogle ScholarPubMed
30.Adams, M., Dogic, Z., Keller, S.L., and Fraden, S.: Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393(6683), 349 (1998).CrossRefGoogle Scholar
31.Adams, M. and Fraden, S.: Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin). Biophys. J. 74(1), 669 (1998).CrossRefGoogle ScholarPubMed
32.Dogic, Z. and Fraden, S.: Phase behavior of rod-like viruses and virus-sphere mixtures. Soft Matter. 2, 1 2006.Google Scholar
33.Flynn, C.E., Lee, S-W., Peelle, B.R., and Belcher, A.M.: Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51(19), 5867 (2003).CrossRefGoogle Scholar
34.Phillips, J. and Schmidt, M.: Bulk phase behavior of binary hard platelet mixtures from density-functional theory. Phys. Rev. E 81(4), 041401 (2010).CrossRefGoogle ScholarPubMed
35.Cinacchi, G. and van Duijneveldt, J.S.: Phase behavior of contact lens-like particles: Entropy-driven competition between isotropic-nematic phase separation and clustering. J. Phys. Chem. Lett. 1(4), 787 (2010).CrossRefGoogle Scholar
36.Bisoyi, H.K. and Kumar, S.: Discotic nematic liquid crystals: Science and technology. Chem. Soc. Rev. 39(1), 264 (2010).CrossRefGoogle ScholarPubMed
37.Donald, A.M. and Windle, A.H.: Liquid Crystalline Polymers (Cambridge University Press, Cambridge, 1992).Google Scholar
38.Larson, R.G.: The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).Google Scholar
39.Duggal, R. and Pasquali, M.: Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys. Rev. Lett. 96(24), 246104 (2006).CrossRefGoogle ScholarPubMed
40.Marshall, B.D., Davis, V.A., Lee, D.C., and Korgel, B.A.: Rotational and translational diffusivities of germanium nanowires. Rheol. Acta 48(5), 589 (2009).CrossRefGoogle Scholar
41.Green, M.J., Parra-Vasquez, A.N.G., Behabtu, N., and Pasquali, M.: Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J. Chem. Phys. 131(8), 041401 (2009).CrossRefGoogle ScholarPubMed
42.Dong, X.M., Kimura, T., Revol, J.F., and Gray, D.G.: Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8), 2076 (1996).CrossRefGoogle Scholar
43.Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627 (1949).CrossRefGoogle Scholar
44.Flory, P.J.: Phase equilibria in solutions of rod-like particles. Proc. R. Soc. London, Ser. A 234, 73 (1956).Google Scholar
45.Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1992).Google Scholar
46.Khokhlov, A.R.: Theories based on the Onsager approach, in Liquid Crystallinity in Polymers, edited by Ciferri, A. (VCH Publishers, New York, 1991), pp. 97129.Google Scholar
47.Khokhlov, A.R. and Semenov, A.N.: On the theory of liquid-crystalline ordering of polymer-chains with limited flexibility. J. Stat. Phys. 38(1–2), 161 (1985).CrossRefGoogle Scholar
48.Speranza, A. and Sollich, P.: Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity. Phys. Rev. E 67(6), 061702 (2003).CrossRefGoogle ScholarPubMed
49.Speranza, A. and Sollich, P.: Isotropic-nematic phase equilibria of polydisperse hard rods: The effect of fat tails in the length distribution. J. Chem. Phys. 118(11), 5213 (2003).CrossRefGoogle Scholar
50.Wensink, H.H. and Vroege, G.J.: Isotropic-nematic phase behavior of length-polydisperse hard rods. J. Chem. Phys. 119(13), 6868 (2003).CrossRefGoogle Scholar
51.Abe, A. and Balluff, M.: The Flory lattice model, in Liquid Crystallinity in Polymers, edited by Ciferri, A. (VCH Publishers, New York, 1991), pp. 131167.Google Scholar
52.Maeda, H. and Maeda, Y.: Direct observation of Brownian dynamics of hard colloidal nanorods. Nano Lett. 7(11), 3329 (2007).CrossRefGoogle ScholarPubMed
53.Pelletier, O., Bourgaux, C., Diat, O., Davidson, P., and Livage, J.: A biaxial nematic gel phase in aqueous vanadium pentoxide suspensions. Eur. Phys. J. B 12(4), 541 (1999).CrossRefGoogle Scholar
54.Lemaire, B.J., Davidson, P., Petermann, D., Panine, P., Dozov, I., Stoenescu, D., and Jolivet, J.P.: Physical properties of aqueous suspensions of goethite (alpha-FeOOH) nanorods—Part II: In the nematic phase. Eur. Phys. J. E 13(3), 309 (2004).CrossRefGoogle Scholar
55.Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483 (1996).CrossRefGoogle ScholarPubMed
56.Song, W.H., Kinloch, I.A., and Windle, A.H.: Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302(5649), 1363 (2003).CrossRefGoogle ScholarPubMed
57.Song, Y.S. and Youn, J.R.: Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7), 1378 (2005).CrossRefGoogle Scholar
58.Banerjee, S., Hemraj-Benny, T., and Wong, S.S.: Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17(1), 17 (2005).CrossRefGoogle Scholar
59.Zakri, C. and Poulin, P.: Phase behavior of nanotube suspensions: From attraction induced percolation to liquid crystalline phases. J. Mater. Chem. 16(42), 4095 (2006).CrossRefGoogle Scholar
60.Li, Q.W., Zhu, Y.T., Kinloch, I.A., and Windle, A.H.: Self-organization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B 110(28), 13926 (2006).CrossRefGoogle ScholarPubMed
61.Zhang, S.J., Kinloch, I.A., and Windle, A.H.: Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6(3), 568 (2006).CrossRefGoogle ScholarPubMed
62.Nepal, D., Balasubramanian, S., Simonian, A.L., and Davis, V.A.: Strong antimicrobial coatings: Single-walled carbon nanotubes armored with biopolymers. Nano Lett. 8(7), 1896 (2008).CrossRefGoogle ScholarPubMed
63.Nepal, D. and Geckeler, K.E.: Functional nanomaterials, in Functionalization of Carbon Nanotubes, edited by Geckeler, K.E. and Rosenberg, E. (American Scientific Publishers, Valencia, California, 2006), pp. 5779.Google Scholar
64.Nepal, D., Sohn, J.-I., Aicher, W.K., Lee, S., and Geckeler, K.E.: Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction. Biomacromolecules 6(6), 2919 (2005).CrossRefGoogle ScholarPubMed
65.Badaire, S., Zakri, C., Maugey, M., Derre, A., Barisci, J.N., Wallace, G., and Poulin, P.: Liquid crystals of DNA-stabilized carbon nanotubes. Adv. Mater. 17(13), 1673 (2005).CrossRefGoogle Scholar
66.Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., and Smalley, R.E.: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol., A 19(4), 1800 (2001).CrossRefGoogle Scholar
67.Barisci, J.N., Tahhan, M., Wallace, G.G., Badaire, S., Vaugien, T., Maugey, M., and Poulin, P.: Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Funct. Mater. 14(2), 133 (2004).CrossRefGoogle Scholar
68.Ao, G., Nepal, D., Aono, M., and Davis, V.A.: Tunable lyotropic liquid crystalline phase behavior of SWNT-DNA dispersion (Submitted).Google Scholar
69.Nepal, D. and Geckeler, K.E.: Proteins and carbon nanotubes: Close encounter in water. Small 3(7), 1259 (2007).CrossRefGoogle ScholarPubMed
70.Moulton, S.E., Maugey, M., Poulin, P., and Wallace, G.G.: Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J. Am. Chem. Soc. 129(30), 9452 (2007).CrossRefGoogle ScholarPubMed
71.Bergin, S.D., Nicolosi, V., Giordani, S., de Gromard, A., Carpenter, L., Blau, W.J., and Coleman, J.N.: Exfoliation in ecstasy: Liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology 18(45), 455705 (2007).CrossRefGoogle Scholar
72.Marrucci, G.: Rheology of nematic polymers, in Liquid Crystallinity in Polymers, edited by Ciferri, A. (VCH Publishers, New York, 1991), pp. 395421.Google Scholar
73.Rai, P.K., Pinnick, R.A., Parra-Vasquez, A.N.G., Davis, V.A., Schmidt, H.K., Hauge, R.H., Smalley, R.E., and Pasquali, M.: Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc. 128(2), 591 (2006).CrossRefGoogle ScholarPubMed
74.Kiss, G.D.: Rheology and rheo-optics of concentrated solutions of helical polypeptides. Ph.D. Thesis, University of Massachusetts Amherst, 1979.Google Scholar
75.Zhou, W., Fischer, J.E., Heiney, P.A., Fan, H., Davis, V.A., Pasquali, M., and Smalley, R.E.: Single-walled carbon nanotubes in superacid: X-ray and calorimetric evidence for partly ordered H2SO4. Phys. Rev. B 72(4), 045440 (2005).CrossRefGoogle Scholar
76.Papkov, S.P., Malkin, A.Y., and Kulichikin, V.G.: Rheological properties of anisotropic poly(para-benzamide) solutions. J. Polym. Sci., Part B: Polym. Phys. 12, 1753 (1974).Google Scholar
77.Davis, V.A., Parra-Vasquez, A.N.G., Green, M.J., Rai, P.K., Behabtu, N., Prieto, V., Booker, R.D., Schmidt, J., Kesselman, E., Zhou, W., Fan, H., Adams, W.W., Hauge, R.H., Fischer, J.E., Cohen, Y., Talmon, Y., Smalley, R.E., and Pasquali, M.: True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 4(12), 830 (2009).CrossRefGoogle ScholarPubMed
78.Sonin, A.: Inorganic Lyotropic Liquid Crystals. J. Mater. Chem. 2557 (1998).CrossRefGoogle Scholar
79.Gabriel, J.C.P. and Davidson, P.: New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater. 12(1), 9 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
80.Ghezelbash, A., Koo, B., and Korgel, B.A.: Self-assembled stripe patterns of CdS nanorods. Nano Lett. 6(8), 1832 (2006).CrossRefGoogle ScholarPubMed
81.McCarthy, D.N., Nicolosi, V., Vengust, D., Mihailovic, D., Compagnini, G., Blau, W.J., and Coleman, J.N.: Dispersion and purification of Mo6S3I6 nanowires in organic solvents. J. Appl. Phys. 101(1), 014317 (2007).CrossRefGoogle Scholar
82.Gou, L.F., Chipara, M., and Zaleski, J.M.: Convenient, rapid synthesis of Ag nanowires. Chem. Mater. 19(7), 1755 (2007).CrossRefGoogle Scholar
83.Sun, Y.G., Yin, Y.D., Mayers, B.T., Herricks, T., and Xia, Y.N.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14(11), 4736 (2002).CrossRefGoogle Scholar
84.Sun, Y.G. and Xia, Y.N.: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14(11), 833 (2002).3.0.CO;2-K>CrossRefGoogle Scholar
85.Sharma, V., Park, K., and Srinivasarao, M.: Shape separation of gold nanorods using centrifugation. PNAS 106(13), 4981 (2009).CrossRefGoogle ScholarPubMed
86.Vroege, G.J., Thies-Weesie, D.M.E., Petukhov, A.V., Lemaire, B.J., and Davidson, P.: Smectic liquid-crystalline order in suspensions of highly polydisperse goethite nanorods. Adv. Mater. 18(19), 2565 (2006).CrossRefGoogle Scholar
87.Dessombz, A., Chiche, D., Davidson, P., Panine, P., Chaneac, C., and Jolivet, J.P.: Design of liquid-crystalline aqueous suspensions of rutile nanorods: Evidence of anisotropic photocatalytic properties. J. Am. Chem. Soc. 129(18), 5904 (2007).CrossRefGoogle ScholarPubMed
88.Jana, N.R., Gearheart, L.A., Obare, S.O., Johnson, C.J., Edler, K.J., Mann, S., and Murphy, C.J.: Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 12(10), 2909 (2002).CrossRefGoogle Scholar
89.Sharma, V., Park, K., and Srinivasarao, M.: Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater. Sci. Eng., R 65(1–3), 1 (2009).CrossRefGoogle Scholar
90.Murali, S., Xu, T., Marshall, B.D., Kayatin, M.J., Pizarro, K., Radhakrishnan, V., Nepal, D., and Davis, V.A.: Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles. Langmuir. 26(13), 11176 (2010).CrossRefGoogle ScholarPubMed
91.Baranov, D., Fiore, A., van Huis, M., Giannini, C., Falqui, A., Lafont, U., Zandbergen, H., Zanella, M., Cingolani, R., and Manna, L.: Assembly of colloidal semiconductor nanorods in solution by depletion attraction: Nano Lett. 10(2), 743 (2010)CrossRefGoogle ScholarPubMed
92.Lee, S.D.: A Numerical Investigation of Nematic Ordering Based on a Simple Hard-Rod Model. J. Chem. Phys. 87(8), 4972 (1987).CrossRefGoogle Scholar
93.Bolhuis, P.G., Stroobants, A., Frenkel, D., and Lekkerkerker, H.N.W.: Numerical study of the phase behavior of rodlike colloids with attractive interactions. J. Chem. Phys. 107(5), 1551 (1997).CrossRefGoogle Scholar
94.Talapin, D.V., Shevchenko, E.V., Murray, C.B., Kornowski, A., Forster, S., and Weller, H.: CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 126(40), 12984 (2004).CrossRefGoogle ScholarPubMed
95.Urakami, N. and Imai, M.: Dependence on sphere size of the phase behavior of mixtures of rods and spheres. J. Chem. Phys. 119(4), 2463 (2003).CrossRefGoogle Scholar
96.Pang, Y.T., Meng, G.W., Fang, Q., and Zhang, L.D.: Silver nanowire array infrared polarizers. Nanotechnology 14(1), 20 (2003).CrossRefGoogle Scholar
97.Hu, X.H. and Chan, C.T.: Photonic crystals with silver nanowires as a near-infrared superlens. Appl. Phys. Lett. 85(9), 1520 (2004).CrossRefGoogle Scholar
98.Jeong, D.H., Zhang, Y.X., and Moskovits, M.: Polarized surface-enhanced Raman scattering from aligned silver nanowire rafts. J. Phys. Chem. B 108(34), 12724 (2004).CrossRefGoogle Scholar
99.Aslan, K., Lakowicz, J.R., and Geddes, C.D.: Metal-enhanced fluorescence using anisotropic silver nanostructures: Critical progress to date. Anal. Bioanal. Chem. 382(4), 926 (2005).CrossRefGoogle ScholarPubMed
100.De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., and Coleman, J.N.: Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3(7), 1767 (2009).CrossRefGoogle ScholarPubMed
101.Zamora-Ledezma, C., Blanc, C., Maugey, M., Zakri, C., Poulin, P., and Anglaret, E.: Anisotropic thin films of single-wall carbon nanotubes from aligned lyotropic nematic suspensions. Nano Lett. 8(12), 4103 (2008).CrossRefGoogle ScholarPubMed
102.Lemaire, B.J., Davidson, P., Panine, P., and Jolivet, J.P.: Magnetic-field-induced nematic-columnar phase transition in aqueous suspensions of goethite (alpha-FeOOH) nanorods. Phys. Rev. Lett. 93(26), 267801 (2004).CrossRefGoogle ScholarPubMed
103.Lemaire, B.J., Davidson, P., Ferre, J., Jamet, J.P., Petermann, D., Panine, P., Dozov, I., Stoenescu, D., and Jolivet, J.P.: The complex phase behaviour of suspensions of goethite (alpha-FeOOH) nanorods in a magnetic field. Faraday Discuss. 128, 271 (2005).CrossRefGoogle ScholarPubMed
104.Lemaire, B.J., Davidson, P., Ferre, J., Jamet, J.P., Petermann, D., Panine, P., Dozov, I., and Jolivet, J.P.: Physical properties of aqueous suspensions of goethite (alpha-FeOOH) nanorods—Part I: In the isotropic phase. Eur. Phys. J. E 13(3), 291 (2004).CrossRefGoogle ScholarPubMed
105.Lemaire, B.J., Davidson, P., Ferre, J., Jamet, J.P., Panine, P., Dozov, I., and Jolivet, J.P.: Outstanding magnetic properties of nematic suspensions of goethite (alpha-FeOOH) nanorods. Phys. Rev. Lett. 88(12), 125507 (2002).CrossRefGoogle ScholarPubMed
106.Kim, J., Bae, S.H., and Lim, H.G.: Micro transfer printing on cellulose electro-active paper. Smart Mater. Struct. 15(3), 889 (2006).CrossRefGoogle Scholar
107.Kim, J., Song, C.S., and Yun, S.R.: Cellulose based electro-active papers: Performance and environmental effects. Smart Mater. Struct. 15(3), 719 (2006).CrossRefGoogle Scholar
108.Kim, J., Yun, S., and Ounaies, Z.: Discovery of cellulose as a smart material. Macromolecules 39(12), 4202 (2006).CrossRefGoogle Scholar
109.Kim, J.H., Kang, Y.K., and Yun, S.R.: Characterization of electro-active paper composite. Key Engineering Materials. 297300, 671 (2005).CrossRefGoogle Scholar
110.Podsiadlo, P., Choi, S.Y., Shim, B., Lee, J., Cuddihy, M., and Kotov, N.A.: Molecularly engineered nanocomposites: Layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6(6), 2914 (2005).CrossRefGoogle ScholarPubMed
111.Wegner, T.H. and Jones, P.E.: Advancing cellulose-based nanotechnology. Cellulose 13(2), 115 (2006).CrossRefGoogle Scholar
112.Deshpande, S.D., Kim, J., and Yun, S.R.: Studies on conducting polymer electroactive paper actuators: Effect of humidity and electrode thickness. Smart Mater. Struct. 14(4), 876 (2005).CrossRefGoogle Scholar
113.Samir, M.A.S.A., Alloin, F., and Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612 (2005).CrossRefGoogle Scholar
114.Revol, J.F., Godbout, L., Dong, X.M., Gray, D.G., Chanzy, H., and Maret, G.: Chiral nematic suspensions of cellulose crystallites—Phase-separation and magnetic-field orientation. Liq. Cryst. 16(1), 127 (1994).CrossRefGoogle Scholar
115.Bondeson, D., Mathew, A., and Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2), 171 (2006).CrossRefGoogle Scholar
116.Beck-Candanedo, S., Roman, M., and Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2), 1048 (2005).CrossRefGoogle ScholarPubMed
117.Revol, J.F., Bradford, H., Giasson, J., Marchessault, R.H., and Gray, D.G.: Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14(3), 170 (1992).CrossRefGoogle ScholarPubMed
118.Azizi Samir, M.A.S., Alloin, F., Sanchez, J.Y., and Dufresne, A.: Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13), 4839 (2004).CrossRefGoogle Scholar
119.Favier, V., Canova, G.R., Cavaille, J.Y., Chanzy, H., Dufresne, A., and Gauthier, C.: Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Technol. 6(5), 351 (1995).CrossRefGoogle Scholar
120.Orts, W.J., Godbout, L., Marchessault, R.H., and Revol, J.F.: Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: A small angle neutron scattering study. Macromolecules 31(17), 5717 (1998).CrossRefGoogle Scholar
121.Stroobants, A., Lekkerkerker, H.N.W., and Odijk, T.: Effect of electrostatic interaction on the liquid-crystal phase-transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8), 2232 (1986).CrossRefGoogle Scholar
122.Dong, X.M. and Gray, D.G.: Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8), 2404 (1997).CrossRefGoogle Scholar
123.Beck-Candanedo, S., Viet, D., and Gray, D.G.: Induced phase separation in low-ionic-strength cellulose nanocrystal suspensions containing high-molecular-weight blue dextrans. Langmuir 22(21), 8690 (2006).CrossRefGoogle ScholarPubMed
124.Beck-Candanedo, S., Viet, D., and Gray, D.G.: Induced phase separation in cellulose nanocrystal suspensions containing ionic dye species. Cellulose 13(6), 629 (2006).CrossRefGoogle Scholar
125.Pan, J.H., Hamad, W., and Straus, S.K.: Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8), 3851 (2010).CrossRefGoogle Scholar
126.Song, W.H. and Windle, A.H.: Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38(14), 6181 (2005).CrossRefGoogle Scholar