Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T01:59:27.194Z Has data issue: false hasContentIssue false

Low temperature epitaxial NiSi2 formation on Si(111) by diffusing Ni through amorphous Ni–Zr

Published online by Cambridge University Press:  31 January 2011

R. de Reus
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
H. C. Tissink
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
F. W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Get access

Abstract

Although amorphous alloys are known to be good diffusion barriers, amorphous nickel-zirconium is shown to react with Si at relatively low temperatures. Diffusion of Ni at 350°C through an amorphous Ni–Zr buffer layer leads to the formation of epitaxial NiSi2 on single crystal silicon substrates. Interplay of mobility and thermodynamics is applicable for epitaxial silicide nucleation and growth. Also, a one-step annealing process in oxygen ambient leads to bilayer formation of NiSi2/ZrO2 structures on silicon substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Saris, F.W., Hung, L. S., Nastasi, M., and Mayer, J.W., MRS Symp. Proc. 54, 81 (1986).CrossRefGoogle Scholar
2Samwer, K., Physics Reports 161, 1 (1988).CrossRefGoogle Scholar
3Barbour, J.C., Phys. Rev. Lett. 55, 2872 (1985).CrossRefGoogle Scholar
4Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Solids 61–62, 817 (1984).CrossRefGoogle Scholar
5Buschow, K. H. J., J. Phys. F: Met. Phys. 14, 593 (1984).CrossRefGoogle Scholar
6Altounian, Z., Guo-hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
7Saunders, N. and Miodownik, A. P., J.Mater. Res. 1, 38 (1986).CrossRefGoogle Scholar
8de Boer, F.R., Boom, R., Mattens, W.CM., Miedema, A.R., and Niessen, A. K., Cohesion in Alloys, edited by de Boer, F. R. and Pettifor, D. (North Holland, Amsterdam, 1988).Google Scholar
9Cheng, Y. T., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
10Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
11Hoshino, K., Averback, R.S., Hahn, H., and Rothman, S.J., J. Mater. Res. 3, 55 (1988).CrossRefGoogle Scholar
12Tu, K. N., Alessandrini, E.I., Chu, W. K., Krautle, H., and Mayer, J.W., Jpn. J. Appl. Phys. Suppl. 2, Pt. 1, 669 (1974).CrossRefGoogle Scholar
13d'Heurle, F. M., Petersson, C. S., Baglin, J. E. E., LaPlaca, S. J., and Wong, C.Y., J. Appl. Phys. 55, 4208 (1984).CrossRefGoogle Scholar
14Nicolet, M-A. and Lau, S. S., in VLSI Electronics: Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983).Google Scholar
15Hong, Q. Z., Hung, L. S., and Mayer, J.W., J. Appl. Phys. 65, 3395 (1989).CrossRefGoogle Scholar
16Roorda, S., Doom, S., Sinke, W. C., Scholte, P. M. L. O., and van Loenen, E., Phys. Rev. Lett. 62, 1880 (1989).CrossRefGoogle Scholar
17Walz, B., Oelhafen, P., Güntherodt, H-J., and Baiker, A., Appl. Surf. Sci. 37, 337 (1989).CrossRefGoogle Scholar