Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T11:53:12.917Z Has data issue: false hasContentIssue false

Low temperature–controlled synthesis of hierarchical Cu2O/Cu(OH)2/CuO nanostructures for energy applications

Published online by Cambridge University Press:  06 August 2019

Priyanka Marathey
Affiliation:
Department of Solar Energy, Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India
Sakshum Khanna
Affiliation:
Department of Solar Energy, Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India
Ranjan Pati
Affiliation:
Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India
Indrajit Mukhopadhyay
Affiliation:
Department of Solar Energy, Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India; and Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India
Abhijit Ray*
Affiliation:
Department of Solar Energy, Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India; and Solar Research and Development Centre, Pandit Deendayal Petroleum University, Gandhinagar 382007, India
*
a)Address all correspondence to this author. e-mail: abhijit.ray1974@gmail.com
Get access

Abstract

Nano-forms of copper oxides (CuO and Cu2O) are potential candidates in the field of energy conversion and storage. Low temperature and controlled growth of three-dimensional nanostructured hierarchical assembly of CuO over Cu2O is reported here with demonstrated advantage in energy conversion and storage applications. Electrodeposited Cu2O is partially oxidized in an alkali bath to two different forms of hierarchical nanostructures (HNS): CuO/Cu2O and CuO:Cu(OH)2/Cu2O. Randomly oriented nanorods and nanoflakes with high surface area tussock-like nanostructure are formed during oxidation at room and at elevated temperatures, respectively. The nanoflake morphology exhibits a high surface area of 85.82 m2/g and sufficient ion percolation pathways, leading to an efficient electrode–electrolyte interface for electrochemical energy devices. A favorable conduction and valence band alignment in the HNS with respect to water redox level along with fast electron diffusion time of 0.8 μs make it an ideal photocathode.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tajik, S., Dubal, D.P., Gomez-Romero, P., Yadegari, A., Rashidi, A., Nasernejad, B., and Asiri, A.M.: Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategy. Int. J. Hydrogen Energy 42, 12384 (2017).CrossRefGoogle Scholar
Endut, Z., Hamdi, M., and Basirun, W.: Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528, 213 (2013).CrossRefGoogle Scholar
Dubal, D.P., Gund, G.S., Holze, R., Jadhav, H.S., Lokhande, C.D., and Park, C-J.: Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459 (2013).CrossRefGoogle ScholarPubMed
Wang, G., Zhang, L., and Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle ScholarPubMed
Vidyadharan, B., Misnon, I.I., Ismail, J., Yusoff, M.M., and Jose, R.: High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. J. Alloys Compd. 633, 22 (2015).CrossRefGoogle Scholar
Mallick, P. and Sahu, S.: Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol–gel route. Nanosci. Nanotechnol. 2, 71 (2012).CrossRefGoogle Scholar
Zhu, H., Wang, J., and Xu, G.: Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst. Growth Des. 9, 633 (2008).CrossRefGoogle Scholar
Zhou, X., Nie, H., Yao, Z., Dong, Y., Yang, Z., and Huang, S.: Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens. Actuators, B 168, 1 (2012).CrossRefGoogle Scholar
Zhang, J., Liu, J., Peng, Q., Wang, X., and Li, Y.: Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867 (2006).CrossRefGoogle Scholar
Zhang, X., Wang, G., Zhang, W., Wei, Y., and Fang, B.: Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens. Bioelectron. 24, 3395 (2009).CrossRefGoogle ScholarPubMed
Zhao, X., Jin, Y., Xiang, C., Jin, J., Ding, M., Wu, S., Jia, C., and Sun, L.: Conformal filling of TiO2 nanotubes with dense MxSy films for 3D heterojunctions: The anion effect. ChemElectroChem 6, 1177 (2019).CrossRefGoogle Scholar
Zhao, X., Huang, J., Wang, Y., Xiang, C., Sun, D., Wu, L., Tang, X., Sun, K., Zang, Z., and Sun, L.: Interdigitated CuS/TiO2 nanotube bulk heterojunctions achieved via ion exchange. Electrochim. Acta 199, 180 (2016).CrossRefGoogle Scholar
Sun, L., Huang, Y., Hossain, M.A., Li, K., Adams, S., and Wang, Q.: Fabrication of TiO2/CuSCN bulk heterojunctions by profile-controlled electrodeposition. J. Electrochem. Soc. 159, D323 (2012).CrossRefGoogle Scholar
Kuang, M., Li, T.T., Chen, H., Zhang, S.M., Zhang, L.L., and Zhang, Y.X.: Hierarchical Cu2O/CuO/Co3O4 core–shell nanowires: Synthesis and electrochemical properties Nanotechnology 26, 304002 (2015).CrossRefGoogle Scholar
Xiang, C., Zhao, X., Tan, L., Ye, J., Wu, S., Zhang, S., and Sun, L.: A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy 55, 269 (2019).CrossRefGoogle Scholar
Ulyankina, A., Leontyev, I., Maslova, O., Allix, M., Rakhmatullin, A., Nevzorova, N., Valeev, R., Yalovega, G., and Smirnova, N.: Copper oxides for energy storage application: Novel pulse alternating current synthesis. Mater. Sci. Semicond. Process. 73, 111 (2018).CrossRefGoogle Scholar
Harilal, M., Vidyadharan, B., Misnon, I.I., Anilkumar, G.M., Lowe, A., Ismail, J., Yusoff, M.M., and Jose, R.: One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9, 10730 (2017).CrossRefGoogle ScholarPubMed
Shinde, S.K., Dubal, D.P., Ghodake, G.S., and Fulari, V.J.: Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv. 5, 4443 (2015).CrossRefGoogle Scholar
Navathe, G., Patil, D., Jadhav, P., Awale, D., Teli, A., Bhise, S., Kolekar, S., Karanjkar, M., Kim, J., and Patil, P.: Rapid synthesis of nanostructured copper oxide for electrochemical supercapacitor based on novel [HPMIM][Cl] ionic liquid. J. Electroanal. Chem. 738, 170 (2015).CrossRefGoogle Scholar
Vidhyadharan, B., Misnon, I.I., Aziz, R.A., Padmasree, K., Yusoff, M.M., and Jose, R.: Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2, 6578 (2014).CrossRefGoogle Scholar
Dubal, D.P., Gund, G.S., Lokhande, C.D., and Holze, R.: CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Mater. Res. Bull. 48, 923 (2013).CrossRefGoogle Scholar
Hsu, Y-K., Chen, Y-C., and Lin, Y-G.: Characteristics and electrochemical performances of lotus-like CuO/Cu (OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43 (2012).CrossRefGoogle Scholar
Wijesundera, R.P.: Electrodeposited Cu2O thin films for fabrication of CuO/Cu2O heterojunction. In Solar Cells-Thin-Film Technologies (InTech, Rijeka, Croatia, 2011); pp. 89–110.Google Scholar
Zhang, J., Feng, H., Qin, Q., Zhang, G., Cui, Y., Chai, Z., and Zheng, W.: Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J. Mater. Chem. A 4, 6357 (2016).CrossRefGoogle Scholar
Li, C., Yamahara, H., Lee, Y., Tabata, H., and Delaunay, J-J.: CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology 26, 305503 (2015).CrossRefGoogle ScholarPubMed
Fan, G. and Li, F.: Effect of sodium borohydride on growth process of controlled flower-like nanostructured Cu2O/CuO films and their hydrophobic property. Chem. Eng. J. 167, 388 (2011).CrossRefGoogle Scholar
Govindaraju, G.V., Wheeler, G.P., Lee, D., and Choi, K-S.: Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes. Chem. Mater. 29, 355 (2016).CrossRefGoogle Scholar
Izaki, M., Shinagawa, T., Mizuno, K-T., Ida, Y., Inaba, M., and Tasaka, A.: Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J. Phys. D: Appl. Phys. 40, 3326 (2007).CrossRefGoogle Scholar
Zhang, W., Wen, X., and Yang, S.: Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films. Inorg. Chem. 42, 5005 (2003).CrossRefGoogle ScholarPubMed
Cho, M., Yoon, K., and Song, B.: Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. J. Appl. Polym. Sci. 83, 1397 (2002).CrossRefGoogle Scholar
Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., and Yang, S.: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).CrossRefGoogle Scholar
Dar, M., Ahsanulhaq, Q., Kim, Y., Sohn, J., Kim, W., and Shin, H.: Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Appl. Surf. Sci. 255, 6279 (2009).CrossRefGoogle Scholar
Zheng, J.Y., Van, T-K., Pawar, A.U., Kim, C.W., and Kang, Y.S.: One-step transformation of Cu to Cu2O in alkaline solution. RSC Adv. 4, 18616 (2014).CrossRefGoogle Scholar
Cao, A-m., Monnell, J.D., Matranga, C., Wu, J-m., Cao, L-l., and Gao, D.: Hierarchical nanostructured copper oxide and its application in arsenic removal. J. Phys. Chem. C 111, 18624 (2007).CrossRefGoogle Scholar
Yin, M., Wu, C-K., Lou, Y., Burda, C., Koberstein, J.T., Zhu, Y., and O’Brien, S.: Copper oxide nanocrystals. J. Am. Chem. Soc. 127, 9506 (2005).CrossRefGoogle ScholarPubMed
Shaikh, J., Pawar, R., Devan, R., Ma, Y., Salvi, P., Kolekar, S., and Patil, P.: Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim. Acta 56, 2127 (2011).CrossRefGoogle Scholar
Skoog, D., Holler, F.J., and Crouch, S.: Principles of Instrumental Analysis (Thomson Brooks Cole, Canada, 2007).Google Scholar
Carriedo, G.A.: The use of cyclic voltammetry in the study of the chemistry of metal-carbonyls: An introductory experiment. J. Chem. Educ. 65, 1020 (1988).CrossRefGoogle Scholar
Kissinger, P.T. and Heineman, W.R.: Cyclic voltammetry. J. Chem. Educ. 60, 702 (1983).CrossRefGoogle Scholar
Liu, J., Wang, J., Xu, C., Jiang, H., Li, C., Zhang, L., Lin, J., and Shen, Z.X.: Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018).CrossRefGoogle ScholarPubMed
MacArthur, D.: The proton diffusion coefficient for the nickel hydroxide electrode. J. Electrochem. Soc. 117, 729 (1970).CrossRefGoogle Scholar
Sharma, V., Singh, I., and Chandra, A.: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018).CrossRefGoogle ScholarPubMed
Orazem, M.E. and Tribollet, B.: Electrochemical Impedance Spectroscopy (John Wiley & Sons, Inc., Hoboken, New Jersey, 2011).Google Scholar
Chang, B-Y. and Park, S-M.: Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207 (2010).CrossRefGoogle ScholarPubMed
Macdonald, J.R. and Barsoukov, E.: Impedance Spectroscopy: Theory, Experiment, and Applications History, Vol. 1 (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005); p. 1.Google Scholar
Taberna, P., Simon, P., and Fauvarque, J-F.: Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, A292 (2003).CrossRefGoogle Scholar
Patel, M. and Ray, A.: Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis. ACS Appl. Mater. Interfaces 6, 10099 (2014).CrossRefGoogle ScholarPubMed
Morad, M.: An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros. Sci. 42, 1307 (2000).CrossRefGoogle Scholar
De Jongh, P., Vanmaekelbergh, D., and Kelly, J.: Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512 (1999).CrossRefGoogle Scholar
Marabelli, F., Parravicini, G., and Salghetti-Drioli, F.: Optical gap of CuO. Phys. Rev. B 52, 1433 (1995).CrossRefGoogle ScholarPubMed
Ray, A., Mukhopadhyay, I., Pati, R., Hattori, Y., Prakash, U., Ishii, Y., and Kawasaki, S.: Optimization of photoelectrochemical performance in chemical bath deposited nanostructured CuO. J. Alloys Compd. 695, 3655 (2017).CrossRefGoogle Scholar
Patel, M., Pati, R., Marathey, P., Kim, J., Mukhopadhyay, I., and Ray, A.: Highly photoactive and photo-stable spray pyrolyzed tenorite CuO thin films for photoelectrochemical energy conversion. J. Electrochem. Soc. 163, H1195 (2016).CrossRefGoogle Scholar
Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., and Thimsen, E.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456 (2011).CrossRefGoogle ScholarPubMed
Niveditha, C., Fatima, M.J., and Sindhu, S.: Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. J. Electrochem. Soc. 163, H426 (2016).CrossRefGoogle Scholar
Zhang, Z. and Wang, P.: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456 (2012).CrossRefGoogle Scholar
Liu, X., Chen, J., Liu, P., Zhang, H., Li, G., An, T., and Zhao, H.: Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Appl. Catal., A 521, 34 (2016).CrossRefGoogle Scholar
Lim, Y-F., Chua, C.S., Lee, C.J.J., and Chi, D.: Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16, 25928 (2014).CrossRefGoogle ScholarPubMed
Dubal, D.P., Gund, G.S., Holze, R., and Lokhande, C.D.: Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 242, 687 (2013).CrossRefGoogle Scholar
Marathey, P., Pati, R., Mukhopadhyay, I., and Ray, A.: Effect of annealing temperature on the PEC performance of electrodeposited copper oxides. AIP Conf. Proc. 1961, 030045 (2018).CrossRefGoogle Scholar
Supplementary material: File

Marathey et al. supplementary material

Figures S1-S6

Download Marathey et al. supplementary material(File)
File 6.8 MB