Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:23:29.108Z Has data issue: false hasContentIssue false

Low-temperature processing and control of structure and properties of TiO2/c-sapphire epitaxial heterostructures

Published online by Cambridge University Press:  24 April 2013

Mohammad Reza Bayati*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
Shivani Joshi
Affiliation:
Amity Institute of Nanotechnology, Noida, Uttar Pradesh-201301, India
Roger Jay Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907; and Joint Department of Biomedical Engineering, UNC Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695-7115
Jay Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
*
a)Address all correspondence to this author. e-mail: mbayati@ncsu.edu
Get access

Abstract

We have investigated the formation of the rutile and the anatase polymorphs of TiO2, with emphasis on epitaxial growth characteristics, and defect content as a function of laser and substrate variables. X-ray diffraction (XRD) studies revealed that the rutile phase is more stable at higher substrate temperatures and lower oxygen pressures; in contrast, decreasing the temperature and increasing the oxygen pressure gave rise to formation of anatase. Epitaxial rutile films with a <100] orientation were obtained at 450 °C using the pressure of 5 × 10−4 Torr, and laser energy of 3.5–4.0 J/cm2. The epitaxial relationship, determined by 2θ−θ and φ scan of XRD and confirmed by transmission electron microscopy (TEM) diffraction patterns, was shown to be rutile(100)||sapphire(0001), rutile[001]||sapphire[10$\bar 1$0] and rutile[010]||sapphire[1$\bar 2$10]. An atomically sharp interface between the rutile epitaxial film and the sapphire substrate was observed in the scanning transmission electron microscopy (STEM) images. The films exhibited a transmittance of 75–90% over the visible region. The absorption edge was observed to shift toward longer wave lengths at higher deposition temperatures or lower pressures. X-ray photoelectron spectroscopy and photoluminescence results showed that concentration of lattice point defects, namely oxygen vacancies and titanium interstitials, increased at lower oxygen pressures. Formation of nanostructured films with a surface roughness of -1.5–13.1 nm was confirmed by atomic force microscopy investigations.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayati, M.R., Moshfegh, A.Z., and Golestani-Fard, F.: On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Appl. Catal., A 389, 60 (2010).CrossRefGoogle Scholar
Bayati, M.R., Golestani-Fard, F., and Moshfegh, A.Z.: In situ growth of vanadia–titania nano/micro-porous layers with enhanced photocatalytic performance by micro-arc oxidation. Electrochim. Acta 55, 3093 (2010).CrossRefGoogle Scholar
Bayati, M.R., Golestani-Fard, F., and Moshfegh, A.Z.: Visible photodecomposition of methylene blue over micro arc oxidized WO3–loaded TiO2 nano-porous layers. Appl. Catal., A 382, 322 (2010).CrossRefGoogle Scholar
Bayati, M.R., Golestani-Fard, F., Moshfegh, A.Z., and Molaei, R.: In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology. Mater. Res. Bull. 46, 531 (2011).CrossRefGoogle Scholar
Park, H., Kim, W.R., Jeong, H.T., Lee, J.J., Kim, H.G., and Choi, W.Y.: Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells 95, 184 (2011).CrossRefGoogle Scholar
Yu, J., Li, Q., and Shu, Z.: Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56, 6293 (2011).CrossRefGoogle Scholar
Yang, G.J., Li, C.J., Fan, S.Q., and Gao, J.C.: Influence of pore structure on ion diffusion property in porous TiO2 coating and photovoltaic performance of dye-sensitized solar cells. Surf. Coat. Technol. 205, 3205 (2011).CrossRefGoogle Scholar
Karunakaran, C., Abiramasundari, G., Gomathi sankar, P., Manikandan, G., and Anandi, V.: Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater. Res. Bull. 46, 1586 (2011).CrossRefGoogle Scholar
Necula, B.S., Apachitei, I., Tichelaar, F.D., Fratila-Apachitei, L.E., and Duszczyk, J.: An electron microscopical study on the growth of TiO2–Ag antibacterial coatings on Ti6Al7Nb biomedical alloy. Acta Biomater. 7, 2751 (2011).CrossRefGoogle Scholar
Bayati, M.R. and Molaei, R.: Visible photoinduced hydrophilicity of V2O5–TiO2 nanoporous ceramic layers grown via micro-arc oxidation. J. Phys. D: Appl. Phys. 43, 505304 (2010).CrossRefGoogle Scholar
Zhang, K.X., Wang, W., Hou, J.L., Zhao, J.H., Zhang, Y., and Fang, Y.C.: Oxygen plasma induced hydrophilicity of TiO2 thin films. Vacuum 85, 990 (2011).CrossRefGoogle Scholar
Bayati, M.R., Molaei, R., Kajbafvala, A., Zanganeh, S., Zargar, H.R., and Janghorban, K.: Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers. Electrochim. Acta 55, 5786 (2010).CrossRefGoogle Scholar
Moon, J., Park, J., Lee, S.J., Zyung, T., and Kim, I.D.: Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuators, B 149, 301 (2010).CrossRefGoogle Scholar
Lin, S., Li, D., Wu, J., Li, X., and Akbar, S.A.: A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuators, B 156, 505 (2011).CrossRefGoogle Scholar
Han, C., Hong, D., Han, S., Gwak, J., and Singh, K.: Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sens. Actuators, B 125, 224 (2007).CrossRefGoogle Scholar
Ashkarran, A.A., Aghigh, S.M., Kavianipour, M., and Farahani, N.J.: Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr. Appl. Phys. 11, 1048 (2011).CrossRefGoogle Scholar
Khan, R. and Dhayal, M.: Nanocrystalline bioactive TiO2–chitosan impedimetric immunosensor for ochratoxin-A. Electrochem. Commun. 10, 492 (2008).CrossRefGoogle Scholar
Fröhlich, K., Hudec, B., Aarik, J., Tarre, A., Machajdík, D., Kasikov, A., Hušeková, K., and Gaži, Š.: Post-deposition processing and oxygen content of TiO2-based capacitors. Microelectron. Eng. 88, 1525 (2011).CrossRefGoogle Scholar
Hudec, B., Hušeková, K., Tarre, A., Han, J.H., Han, S., Rosová, A., Lee, W., Kasikov, A., Song, S.J., Aarik, J., Hwang, C.S., and Fröhlich, K.: Electrical properties of TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes. Microelectron. Eng. 88, 1514 (2011).CrossRefGoogle Scholar
Popovici, M., Kim, M.S., Tomida, K., Swerts, J., Tielens, H., Moussa, A., Richard, O., Bender, H., Franquet, A., Conard, T., Altimime, L., Elshocht, S.V., and Kittl, J.A.: Improved EOT and leakage current for metal–insulator–metal capacitor stacks with rutile TiO2. Microelectron. Eng. 88, 1517 (2011).CrossRefGoogle Scholar
Topuz, B.B., Gündüz, G., Mavis, B., and Çolak, Ü.: The effect of tin dioxide (SnO2) on the anatase-rutile phase transformation of titania (TiO2) in mica-titania pigments and their use in paint. Dyes Pigm. 90, 123 (2011).CrossRefGoogle Scholar
Mahmoudian, M.R., Basirun, W.J., Alias, Y., and Ebadi, M.: Synthesis and characterization of polypyrrole/Sn-doped TiO2 nanocomposites (NCs) as a protective pigment. Appl. Surf. Sci. 257, 8317 (2011).CrossRefGoogle Scholar
Bayati, M.R., Moshfegh, A.Z., and Golestani-Fard, F.: Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Mater. Lett. 64, 2215 (2010).CrossRefGoogle Scholar
Fujishima, A., Zhang, X., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).CrossRefGoogle Scholar
Sbai, N., Perriere, J., Seiler, W., and Millon, E.: Epitaxial growth of titanium oxide thin films on c-cut and α-cut sapphire substrates. Surf. Sci. 601, 5649 (2007).CrossRefGoogle Scholar
Banfield, J.F., Veblen, D.R., and Smith, D.J.: Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO, minerals. Am. Mineral. 76, 343 (1991).Google Scholar
Dervos, C.T., Thirios, E., Novacovich, J., Vassiliou, P., and Skafidas, P.: Permittivity properties of thermally treated TiO2. Mater. Lett. 58, 1502 (2004).CrossRefGoogle Scholar
Madras, G., McCoy, B.J., and Navrotsky, A.: Kinetic model for TiO2 polymorphic transformation from anatase to rutile. J. Am. Ceram. Soc. 90, 250 (2007).CrossRefGoogle Scholar
Sanjines, R., Tang, H., Berger, H., Gozzo, F., Margaritondo, G., and Levy, F.: Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 75, 2945 (1994).Google Scholar
Auger, J.C., Stout, B., Barrera, R.G., and Curiel, F.: Scattering properties of rutile pigments located eccentrically within microvoids. J. Quant. Spectrosc. Radiat. Transfer 70, 675 (2001).CrossRefGoogle Scholar
Cernea, M., Secu, M., Secu, C.E., Baibarac, M., and Vasile, B.S.: Structural and thermoluminescence properties of undoped and Fe-doped-TiO2 nanopowders processed by sol–gel method. J. Nanopart. Res. 13, 77 (2011).CrossRefGoogle Scholar
Andersson, M., Kiselev, A., Osterlund, L., and Palmqvist, A.E.C.: Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance. J. Phys. Chem. C 111, 6789 (2007).CrossRefGoogle Scholar
Kim, S.K., Lee, S.W., Han, J.H., Lee, B., Han, S., and Hwang, C.S.: Capacitors with an equivalent oxide thickness of <0.5 nm for nanoscale electronic semiconductor memory. Adv. Funct. Mater. 20, 2989 (2010).CrossRefGoogle Scholar
Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
Yoo, D., Kim, I., Kim, S., Hahn, C., Lee, C., and Cho, S.: Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature. Appl. Surf. Sci. 253, 3888 (2007).CrossRefGoogle Scholar
Hou, Y.Q., Zhuang, D.M., Zhang, G., Zhao, M., and Wu, M.S.: Influence of annealing temperature on the properties of titanium oxide thin film. Appl. Surf. Sci. 218, 97 (2003).CrossRefGoogle Scholar
Chen, S., Mason, M.G., Gysling, H.J., Paz-Pujalt, G.R., Blanton, T.N., Castro, T.. Chen, K.M., Fictorie, C.P., Gladfelter, W.L., Franciosi, A., Cohen, P.I., and Evans, J.F.: Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol., A 11, 2419 (1993).CrossRefGoogle Scholar
Gao, Y., Thevuthasan, S., McCready, D.E., and Engelhard, M.: MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire. J. Cryst. Growth 212, 178 (2000).CrossRefGoogle Scholar
Singh, R.K. and Narayan, J.: Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 8843 (1990).CrossRefGoogle ScholarPubMed
Syarif, D.G., Miyashita, A., Yamaki, T., Sumita, T., Choi, Y., and Itoh, H.: Preparation of anatase and rutile thin films by controlling oxygen partial pressure. Appl. Surf. Sci. 193, 287 (2002).CrossRefGoogle Scholar
Long, H., Yang, G., Chen, A., Li, Y., and Lu, P.: Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films 517, 745 (2008).CrossRefGoogle Scholar
Mo, S.D. and Ching, W.Y.: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 51, 13023 (1995).CrossRefGoogle ScholarPubMed
Na-Phattalung, S., Smith, M.F., Kim, K., Du, M.H., and Wei, S.H.: First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006).CrossRefGoogle Scholar
Chan, S.W.: Degenerate epitaxy, coincidence epitaxy and origin of “special” boundaries in thin films. J. Phys. Chem. Solids 55, 1137 (1994).CrossRefGoogle Scholar
Zhou, H., Chisholm, M.F., Yang, T.H., Pennycook, S.J., and Narayan, J.: Role of interfacial transition layers in VO2/Al2O3 heterostructures. J. Appl. Phys. 110, 073515 (2011).CrossRefGoogle Scholar
Bayati, M.R., Molaei, R., Narayan, R.J., Narayan, J., Zhou, H., and Pennycook, S.J.: Domain epitaxy in TiO2/a-Al2O3 thin film heterostructures with Ti2O3 transient layer. Appl. Phys. Lett. 100, 251606 (2012).CrossRefGoogle Scholar
Afifi, M.A., Abdel-Aziz, M.M., Yahia, I.S., Fadel, M., and Wahab, L.A.: Transport properties of polycrystalline TiO2 and Ti2O3 as semiconducting oxides. J. Alloys Compd. 455, 92 (2008).CrossRefGoogle Scholar
Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
Mal, S., Nori, S., Jin, C.M., Narayan, J., Nellutla, S., Smirnov, A.I., and Prater, J.T.: Reversible room temperature ferromagnetism in undoped zinc oxide: Correlation between defects and physical properties. J. Appl. Phys. 108, 073510 (2010).CrossRefGoogle Scholar
Finazzi, E., Valentin, C.D., and Pacchioni, G.: Nature of Ti Interstitials in reduced bulk anatase and rutile TiO2. J. Phys. Chem. C 113, 3382 (2009).CrossRefGoogle Scholar
Kroger, F.A.: The Chemistry of Imperfect Crystals (North Holland, Amsterdam, The Netherlands, 1974).Google Scholar
Nowotny, M.K., Bak, T., and Nowotny, J.: Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. J. Phys. Chem. B 110, 16270 (2006).CrossRefGoogle ScholarPubMed
Nowotny, M.K., Sheppard, L.R., Bak, T., and Nowotny, J.: Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 112, 5275 (2008).CrossRefGoogle Scholar
Bak, T., Nowotny, J., Rekas, M., and Sorrell, C.C.: Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams. J. Phys. Chem. Solids 64, 1057 (2003).CrossRefGoogle Scholar
Baiju, K.V., Zachariah, A., Shukla, S., Biju, S., Reddy, M.L.P., and Warrier, K.G.K.: Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catal. Lett. 130, 130 (2009).CrossRefGoogle Scholar
Cong, Y., Zhang, J., Chen, F., and Anpo, M.: Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976 (2007).CrossRefGoogle Scholar