Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T00:28:24.918Z Has data issue: false hasContentIssue false

Magnetic moment and atomic volume in supersaturated Fe–Cu solid solutions: Ab initiocalculations compared with experiments

Published online by Cambridge University Press:  31 January 2011

Wenqing Zhang
Affiliation:
Division of Applied Sciences and Engineering, Harvard University, Cambridge, Massachusetts 02138
E. Ma
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
Get access

Abstract

The properties of nonequilibrium face-centered-cubic (fcc) and body-centered-cubic (bcc) Fe–Cu alloys were studied using the first-principles full-potential linearized augmented plane wave method within the generalized gradient approximation. The ab initio calculation results are compared quantitatively with the magnetic moment and atomic volume observed for mechanically alloyed FexCu100–x (x = 0 to 100) supersaturated bcc and fcc solid solutions. The calculations show that Cu alloying leads to a small enhancement of the magnetic moment of bcc Fe. The fcc Fe moment, on the other hand, experiences a more pronounced increase into a high-spin state upon alloying with Cu. It reaches approximately the same value as that in the bcc alloys for all Cu concentrations where fcc solutions are obtained in experiments, corroborating previous ab initio calculations using different methods. The magnetic moment increases are accompanied by an atomic volume expansion. Both the calculated moment and volume behavior are in good agreement with those measured for fcc and bcc Fe–Cu solutions. The magnetovolume expansion upon magnetic interaction between the alloyed Fe and Cu, rather than the positive heat of mixing, constitutes the primary reason for the atomic volume increase observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yavari, A.R., Desre, P.J., and Benameur, T., Phys. Rev. Lett. 68, 2235 (1992).CrossRefGoogle Scholar
2.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Appl. Phys. 73, 2794 (1993).CrossRefGoogle Scholar
3.Eckert, J., Holzer, J.C., and Johnson, W.L., J. Appl. Phys. 73, 131 and 2794 (1993).CrossRefGoogle Scholar
4.Ma, E., Atzmon, M., and Pinkerton, F., J. Appl. Phys. 74, 955 (1993).CrossRefGoogle Scholar
5.Jiang, J.Z., Gonser, U., Gente, C., and Bormann, R., Appl. Phys. Lett. 63, 1056 (1993).CrossRefGoogle Scholar
6.Drbohlav, O. and Yavari, A.R., Acta Metall. Mater. 43, 1799 (1995).CrossRefGoogle Scholar
7.Ma, E. and Atzmon, M., Mater. Chem. Phys. 39, 249 (1995).CrossRefGoogle Scholar
8.Mazzone, G. and Vittori Anitisari, M., Phys. Rev. B 5, 441 (1996).CrossRefGoogle Scholar
9.Harris, V.G., Kemner, K.M., Das, B.N., Koon, N.C., Ehrlich, A.E., Kirkland, J., Woicik, J., Crespo, P., Hernando, A., and Garcia Escorial, A., Phys. Rev. B 54, 6929 (1996).CrossRefGoogle Scholar
10.Hong, L.B. and Fultz, B., Acta Mater. 46, 2937 (1998).CrossRefGoogle Scholar
11.Schilling, P.J., He, J.H., Tittsworth, R., and Ma, E., Acta Mater. 47, 2525 (1999).CrossRefGoogle Scholar
12.Chien, C.L., Liou, S.H., Kofalt, D., Yu, W., Egami, T., and McGuire, T., Phys. Rev. B 33, 3247 (1986).CrossRefGoogle Scholar
13.Unruh, K.M. and Chien, C.L., Phys. Rev. B 30, 4968 (1984).CrossRefGoogle Scholar
14.Malozemoff, A.P., Williams, A.R., and Morruzi, V.L., Phys. Rev. B 29, 1620 (1984).CrossRefGoogle Scholar
15.Moruzzi, V.L., Marcus, P.M., and Kübler, J., Phys. Rev. B 39, 6957 (1989).CrossRefGoogle Scholar
16.Uhl, M., Sandratskii, L.M., and Kübler, J., Phys. Rev. B 50, 291 (1994).CrossRefGoogle Scholar
17.Moruzzi, V.L., Phys. Rev. B 41, 6939 (1990).CrossRefGoogle Scholar
18.James, P., Ericksson, O., Johansson, B. and Abrikosov, I.A., Phys. Rev. B 59, 419 (1999).CrossRefGoogle Scholar
19.Tatarchenko, A.F., Stepanyuk, V.S., Hergert, W., Rennert, P., Zeller, R., and Dederichs, P.H., Phys. Rev. B 57, 5213 (1998).CrossRefGoogle Scholar
20.Drittler, B., Weinert, M., Zeller, R., and Dederichs, P.H., Phys. Rev. B 39, 930 (1989).CrossRefGoogle Scholar
21.Lu, Z.W., Wei, S.H., Zunger, Alex, Frota-Pessoa, S., and Ferreira, L.G., Phys. Rev. B 44, 512 (1990).CrossRefGoogle Scholar
22.Abrikosov, J.A. and Johansson, B., Phys. Rev. B 57, 14164 (1998).CrossRefGoogle Scholar
23.Faulkner, J.S., Moghadam, N.Y., Wang, Y., and Stocks, G.M., J. Phase Equil. 19, 538 (1998).CrossRefGoogle Scholar
24.Ozolins, V., Wolverton, C., and Zunger, A., Phys. Rev. B 57, 6427 (1998).CrossRefGoogle Scholar
25.Watson, R.E. and Weinert, M., Phys. Rev. B 58, 5981 (1998).CrossRefGoogle Scholar
26.Freeman, A.J., in Alloy Phase Stability, edited by Stocks, G.M. and Gonis, A. (Kluwer Academic Publisher, Dordrecht, The Netherlands, 1989) p. 365.CrossRefGoogle Scholar
27.Wu, R., Freeman, A.J., and Olson, G.B., Science 265, 376 (1994).CrossRefGoogle Scholar
28.Blaha, P., Schwarz, K., Dufek, P., and Augustyn, R., WIEN95, Technical University of Vienna, Vienna, Austria (1995);Google Scholar
Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S.B., Comput. Phys. Commun. 59, 399 (1990).CrossRefGoogle Scholar
29.Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
30.Singh, D.J., Pickett, W.E., and Krakauer, H., Phys. Rev. B 43, 11628 (1991).CrossRefGoogle Scholar
31.Zhu, J., Wang, X.W., and Louie, S.G., Phys. Rev. B 45, 8887 (1992).CrossRefGoogle Scholar
32.Cho, J.H. and Scheffler, M., Phys. Rev. B 53, 10685 (1996).CrossRefGoogle Scholar
33.Ekman, M., Sadigh, B., Einarsdotter, K., and Blaha, P., Phys. Rev. B 58, 5296 (1998).CrossRefGoogle Scholar
34.Wang, X-G., Weiss, W., Shaikhutdinov, Sh.K., Ritter, M., Petersen, M., Wagner, F., Schlögl, R., and Scheffler, M., Phys. Rev. Lett. 81, 1038 (1998).CrossRefGoogle Scholar
35.Pearson, W.B., A Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon, Oxford, United Kingdom, 1958).CrossRefGoogle Scholar
36.Murnaghan, F.D., Proc. Natl. Acad. Sci. USA 50, 697 (1944).Google Scholar
37.Kittle, C., Introduction to Solid State Physics, 4th ed. (John Wiley & Sons, New York, 1971).Google Scholar
38.Zhou, Y., Zhong, L., Zhang, W., and Wang, D., J. Appl. Phys. 81, 1 (1997).Google Scholar
39.Jansen, H. and Prinz, G. (private communications).Google Scholar
40.Barrett, C. and Massalski, T.B., Structure of Metals, 3rd revised edition (Pergamon Press, New York, 1980), p. 372.Google Scholar
41.Lu, M. and Chien, C.L., J. Appl. Phys. 67, 5787 (1990).CrossRefGoogle Scholar
42.Xiao, J.Q. and Chien, C.L., J. Appl. Phys. 70, 6415 (1991).CrossRefGoogle Scholar
43.Macri, P.P., Rose, P., Frattini, R., Enzo, S., Prinicipi, G., Hu, W.X., and Cowlam, N., J. Appl. Phys. 76, 4061 (1994).CrossRefGoogle Scholar