Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-31T23:54:29.287Z Has data issue: false hasContentIssue false

Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires

Published online by Cambridge University Press:  27 April 2011

Spyros Krimpalis*
Affiliation:
National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania; and Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi, Romania
Oana-Georgiana Dragos
Affiliation:
National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania
Anca-Eugenia Moga
Affiliation:
National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania
Nicoleta Lupu
Affiliation:
National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania
Horia Chiriac
Affiliation:
National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania
*
a)Address all correspondence to this author. e-mail: skrimpalis@phys-iasi.ro
Get access

Abstract

The effect of the magnetic anisotropy and the dipolar interactions between NiFe magnetic layers and between nanowires on the magnetic properties of NiFe/Cu multilayered nanowire arrays electrodeposited into the nanopores of anodic aluminium oxide (AAO) templates with diameters of 35 and 200 nm has been studied. The variation of the aspect ratio (thickness/diameter) between the NiFe magnetic and Cu nonmagnetic layers influences the effective anisotropy field. The correlation between the measured hysteresis loops, with the applied field parallel and perpendicular to the multilayered nanowires’ axis, and the calculated effective anisotropy field, Heff, and saturation field, Hsat, shows that it is possible to tune the orientation of the magnetization axis with high accuracy. Two formulas, which include both the intra- and internanowire interactions, were proposed to calculate the saturation fields of multilayered nanowire arrays for the applied field parallel and perpendicular to the nanowires’ axis.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baibich, M.N., Broto, J.M., Fert, A., and Van Dau Nguyen, F., Petroff, E., Etienne, P., Greuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2.Parkin, S.S.P., Jiang, X., Kaiser, C., Panchula, A., Roche, K., and Samant, M.: Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661 (2003).Google Scholar
3.Ktena, A. and Hristoforou, E.: Magnetic effects in sensing applications, in Encyclopedia of Sensors, edited by Grimes, C. (American Scientific Publishers, Valencia, CA, 2006) pp. 821.Google Scholar
4.Hristoforou, E.: Magnetic effects in physical sensor design. J. Optoelectron. Adv. Mater. 4, 245 (2002).Google Scholar
5.Pratt, W.P., Lee, S.F., Slaughter, J.M., Schroeder, P.A., and Bass, J.: Perpendicular giant magnetoresistances of Ag/Co multilayers. Phys. Rev. Lett. 66, 3060 (1991).Google Scholar
6.Dubois, S., Marchal, C., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., and Maurice, J.L.: Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires. Appl. Phys. Lett. 70, 396 (1997).CrossRefGoogle Scholar
7.Piraux, L., Dubois, S., Duvail, J.L., Ounadjela, K., and Fert, A.: Arrays of nanowires of magnetic metals and multilayers: Perpendicular GMR and magnetic properties. J. Magn. Magn. Mater. 175, 127 (1997).CrossRefGoogle Scholar
8.Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).Google Scholar
9.Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996).Google Scholar
10.Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., and Ralph, D.C.: Current-driven magnetization reversal and spin-wave excitation in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000).Google Scholar
11.Wegrowe, J.E., Hoffer, X., Guittienne, Ph., Fabian, A., Gravier, L., Wade, T., and Ansermet, J.Ph.: Spin-polarized current induced magnetization switch: Is the modulus of the magnetic layer conserved? J. Appl. Phys. 91, 6806 (2002).Google Scholar
12.Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrman, R.A., and Ralph, D.C.: Microwave oscillation of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003).CrossRefGoogle ScholarPubMed
13.Cheng, G.S., Zhang, L.D., Chen, S.H., Li, Y., Zhu, X.G., Zhu, Y., Fei, G.T., and Mao, Y.Q.: Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina. J. Mater. Res. 15, 347 (2000).Google Scholar
14.Wu, Y. and Yang, P.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).Google Scholar
15.Contreras, A.M., Grunes, J., Yan, X.M., Liddle, A., and Somorjai, G.A.: Fabrication of platinum nanoparticles and nanowires by electron-beam lithography (EBL) and nanoimprint lithography (NIL): Comparison of ethylene hydrogenation kinetics. Catal. Lett. 100, 115 (2005).Google Scholar
16.Heydon, G.P., Hoon, S.R., Farley, A.N., Tomlinson, S.L., Valera, M.S., Attenborough, K., and Schwarzacher, W.: Magnetic properties of electrodeposited nanowires. J. Phys. D: Appl. Phys. 30, 1083 (1997).CrossRefGoogle Scholar
17.Heinen, J., Boulle, O., Rousseau, K., Malinowski, G., Kläui, M., Swagten, H.J.M., Koopmans, B., Ulysse, C., and Faini, G.: Current-induced domain wall motion in Co/Pt nanowires: Separating spin torque and Oersted-field effects. Appl. Phys. Lett. 96, 202510 (2010).Google Scholar
18.Sun, L., Hao, Y., Chien, C.L., and Searson, P.C.: Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 49, 79 (2005).Google Scholar
19.Li, X.P., Seet, H.L., Fan, J., and Yi, J.B.: Electrodeposition and characteristics of Ni80Fe20/Cu composite wires. J. Magn. Magn. Mater. 304, 111 (2006).Google Scholar
20.Seet, H.L., Li, X.P., Zhao, Z.J., Wong, L.C., Zheng, H.M., and Lee, K.S.: Current density effect on magnetic properties of nanocrystalline electroplated Ni80Fe20/Cu composite wires. J. Magn. Magn. Mater. 302, 113 (2006).Google Scholar
21.Strijkers, G.J., Dalderop, J.H.J., Broeksteeg, M.A.A., Swagten, H.J.M., and de Jonge, W.J.M.: Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina. J. Appl. Phys. 86, 5141 (1999).Google Scholar
22.Sampaio, L.C., Sinnecker, E.H.C.P., Cernicchiaro, G.R.C., Knobel, M., Vazquez, M., and Velazquez, J.: Magnetic microwires as macrospins in a long-range dipole-dipole interaction. Phys. Rev. B 61, 8976 (2000).CrossRefGoogle Scholar
23.Tang, X.T., Wang, G.C., and Shima, M.: Magnetic layer thickness dependence of magnetization reversal in electrodeposited CoNi/Cu multilayer nanowires. J. Magn. Magn. Mater. 309, 188 (2007).CrossRefGoogle Scholar
24.Encinas-Oropesa, A., Demand, M., Piraux, L., Huynen, I., and Ebels, U.: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001).Google Scholar
25.Zhan, Q.F., Gao, J.H., Liang, Y.Q., Di, N.L., and Cheng, Z.H.: Dipolar interactions in arrays of iron nanowires studied by Mössbauer spectroscopy. Phys. Rev. B 72, 024428 (2005).Google Scholar
26.Clime, L., Ciureanu, P., and Yelon, A.: Magnetostatic interaction in dense nanowires arrays. J. Magn. Magn. Mater. 297, 60 (2006).CrossRefGoogle Scholar
27.Valazquez, J., Pirota, K.R., and Vazquez, M.: About the dipolar approach in magnetostatically coupled bistable magnetic micro and nanowires. IEEE Trans. Magn. 39, 3049 (2003).CrossRefGoogle Scholar
28.De La Torre Medina, J., Darques, M., Blon, T., and Piraux, L.: Effects of layering on the magnetostatic interactions in microstructures of CoxCu1-x/Cu nanowires. Phys. Rev. B 77, 014417 (2008).CrossRefGoogle Scholar
29.Carignan, L.P., Lacroix, C., Ouimet, A., Ciureanu, M., Yelon, A., and Menard, D.: Magnetic anisotropy in arrays of Ni, CoFeB and Ni/Cu nanowires. J. Appl. Phys. 102, 023905 (2007).Google Scholar
30.Clime, L., Zhao, S.Y., Chen, P., Normandin, F., Roberge, H., and Veres, T.: The interaction field in arrays of ferromagnetic barcode nanowires. Nanotechnology 18, 435709 (2007).CrossRefGoogle Scholar
31.Chiriac, H., Ovari, T.A., and Pascariu, P.: Phenomenological model for the simulation of hysteresis loops in NiFe/Cu multilayered nanowires. J. Appl. Phys. 103, 07D919 (2008).CrossRefGoogle Scholar
32.Ruderman, M.A. and Kittel, C.: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99 (1954).Google Scholar
33.Kasuya, T.: A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45 (1956).Google Scholar
34.Yosida, K.: Magnetic properties of Cu-Mn alloys. Phys. Rev. 106, 893 (1957).Google Scholar
35.Chen, M., Chien, C.-L., and Searson, P.C.: Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties. Chem. Mater. 18, 1595 (2006).Google Scholar
36.Wong, J., Greene, P., Dumas, R.K., and Liu, K.: Probing magnetic configurations in Co/Cu multilayered nanowires. Appl. Phys. Lett. 94, 032504 (2009).Google Scholar
37.Mieszawska, A.J., Jalilian, R., Sumanasekera, G.U., and Zamborini, F.P.: The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3, 722 (2007).Google Scholar
38.Lee, W., Scholz, R., Nielsch, K., and Gosele, U.: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 44, 6050 (2005).CrossRefGoogle ScholarPubMed
39.Nielsch, K., Müller, F., Li, A.P., and Gösele, U.: Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582 (2000).Google Scholar
40.Chiriac, H., Dragos, O.G., Grigoras, M., Ababei, G., and Lupu, N.: Magnetotransport phenomena in [NiFe/Cu] magnetic multilayered nanowires. IEEE Trans. Magn. 45, 4077 (2009).CrossRefGoogle Scholar
41.Dubois, S., Colin, J., Duvail, J.L., and Piraux, L.: Evidence of strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 61, 21 (2000).CrossRefGoogle Scholar
42.Lee, W., Ji, R., Gosele, U., and Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741 (2006).Google Scholar
43.Krimpalis, S., Dragos, O.G., Grigoras, M., Lupu, N., and Chiriac, H.: Magnetoresistance and spin transfer torque in electrodeposited NiFe/Cu multilayered nanowires. J. Adv. Res. Phys. 1, 021005 (2010).Google Scholar
44.Rheem, Y., Yoo, B.-Y., Koo, B.K., Beyermann, W.P., and Myung, N.V.: Synthesis and magnetotransport studies of single nickel-rich NiFe nanowire. J. Phys. D: Appl. Phys. 40, 7267 (2007).Google Scholar