Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T02:49:26.497Z Has data issue: false hasContentIssue false

Making lipid membranes even tougher

Published online by Cambridge University Press:  31 January 2011

Jognandan Prashar
Affiliation:
Ambri Ltd., Chatswood, NSW 2067, Australia
Phillip Sharp
Affiliation:
Ambri Ltd., Chatswood, NSW 2067, Australia
Mathew Scarffe
Affiliation:
Ambri Ltd., Chatswood, NSW 2067, Australia
Bruce Cornell*
Affiliation:
Ambri Ltd., Chatswood, NSW 2067, Australia
*
a)Address all correspondence to this author. e-mail: brucec@surgicaldiagnostics.com
Get access

Abstract

Biosensors based on lipid membranes promise an inexpensive and versatile platform for application in many fields of molecular sensing. An extensive review of the applications for tethered membranes was reported in the July 2006 MRS Bulletin [A.N. Parikh and J.T. Groves, Materials science of supported lipid membranes. MRS Bull.31(8), 507 (2006)]. The commercial use to which tethered lipid membranes have been applied has been limited by their stability under long-term storage. This report describes a novel membrane construct that is stable at room temperature for months, eliminates the mobile lipid phase present in lipid bilayers, and is robust against detergents under conditions that would destroy a lipid bilayer.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Parikh, A.N.Groves, J.T.: Materials science of supported lipid membranes. MRS Bull. 31(8), 507 2006CrossRefGoogle Scholar
2Davidson, S.M.K.Regen, S.L.: Nearest-neighbor recognition in phospholipid membranes. Chem. Rev. 97, 1269 1997CrossRefGoogle ScholarPubMed
3Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533 1996CrossRefGoogle ScholarPubMed
4Ottova, A.L.Tien, H.T.: Formation and structure of self-assembled monolayers. Bioelectrochem. Bioenerg. 42, 141 1997CrossRefGoogle Scholar
5Seifert, K., Fendler, K.Bamberg, E.: Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys. J. 64, 384 1993CrossRefGoogle ScholarPubMed
6Lang, H., Duschl, C.Vogel, H.: A new class of thiolipids for the attachment of lipid bilayers on gold surfaces. Langmuir 10, 197 1994CrossRefGoogle Scholar
7Nikolelis, D.P., Siontorou, C.G., Krull, U.J.Katrivanos, P.L.: Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore—Modulation of ammonium selectivity by platelet-activating factor. Anal. Chem. 68, 1735 1996CrossRefGoogle ScholarPubMed
8Boden, N., Bushby, R.B., Clarkson, S., Evans, S.D., Knowles, P.F.Marsh, A.: The design and synthesis of simple molecular tethers for binding biomembranes to a gold surface. Tetrahedron 53, 10939 1997CrossRefGoogle Scholar
9Whitesides, G.M.: Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 122, 8303 2000Google Scholar
10Naumann, R., Jonczyk, A., Kopp, R., van Esch, J., Ringsdorf, H., Knoll, W.Graber, P.: Incorporation of membrane proteins in solid-supported lipid layers. Angew. Chem., Int. Ed. Engl. 34, 2056 1995CrossRefGoogle Scholar
11Lee, S-K., Cascao-Pereira, L.G., Sala, R.F., Holmes, S.P., Ryan, K.J.Becker, T.: Ion channel switch array: A biosensor for detecting multiple pathogens. Industrial Biotechnol. 1, 1 2005CrossRefGoogle Scholar
12Daniel, S., Cremer, A.F.Cremer, P.S.: Making lipid membranes rough, tough, and ready to hit the road. MRS Bull. 31, 536 2006CrossRefGoogle Scholar
13Cornell, B.A.: Membrane-based biosensors in Optical Biosensors: Present and Future, edited by F. Ligler and C. Rowe Taitt Elsevier Science Press 2002 Chap. 15, in particular Fig. 25Google Scholar
14Pace, R.J., Braach-Maksvytis, V.L., King, L.G., Osman, P.D., Raguse, B., Wieczorek, L.Cornell, B.A.: Gated ion channel biosensor: A functioning nanomachine. Proc. SPIE. 3270, 50 1998CrossRefGoogle Scholar
15Cornell, B.A., Braach-Maksvytis, V.L.B., King, L.G., Osman, P.D.J., Raguse, B., Wieczorek, L.Pace, R.J.: A biosensor that uses ion-channel switches. Nature 387, 580 1997CrossRefGoogle ScholarPubMed
16Woodhouse, G.E., King, L.G., Wieczorek, L.Cornell, B.A.: Kinetics of the competitive response of receptors immobilised to ion-channels which have been incorporated into a tethered bilayer. Faraday Discuss. 111, 247 1998CrossRefGoogle Scholar
17Raguse, B., Culshaw, P.N., Raval, K.Prashar, J.K.: The synthesis of archaebacterial lipid analogues. Tett. Lett. 41, 2971 2000CrossRefGoogle Scholar
18Raguse, B., Braach-Maksvytis, V., Cornell, B.A., King, L.G., Osman, P.D.J., Pace, R.J.Wieczorek, L.: Tethered lipid bilayer membranes: Formation and ionic reservoir characterization. Langmuir 14, 648 1998CrossRefGoogle Scholar
19Hemsley, G.Busath, D.: Small iminium ions block gramicidin channels in lipid bilayers. Biophys. J. 59, 901 1991CrossRefGoogle ScholarPubMed