Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T03:20:18.032Z Has data issue: false hasContentIssue false

MASS-NMR structural analysis of barium aluminofluorophosphate glasses with and without nitridation

Published online by Cambridge University Press:  31 January 2011

Joseph P. Fletcher
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Subhash H. Risbud
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
R. James Kirkpatrick
Affiliation:
School of Chemical Sciences and Department of Geology, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

The local structure of barium-aluminofluorophosphate (Ba–Al–P–O–F) glasses was investigated using high resolution magic-angle sample spinning nuclear magnetic resonance (MASS-NMR) spectroscopy. The 27Al spectra show three different aluminum environments [Al(4), Al(5), and Al(6)] in these glasses. Changes were observed due to the addition of fluorine and nitrogen. 31P results indicate only one type of phosphorus environment which shifts with fluorine additions. The 19F spectra suggest that fluorine has both Ba and Al as nearest neighbors.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tredway, W. K. and Risbud, S. H., in Non-Oxide Technical and Engineering Ceramics, edited by Hampshire, S. (Elsevier Applied Science Publications, 1987), p. 203.Google Scholar
2Kumar, B. and Harris, R., Phys. Chem. Glasses 25, 155 (1984).Google Scholar
3Shaw, C. M. and Shelby, J. E., Phys. Chem. Glasses 29, 49 (1988).Google Scholar
4Kumar, B., Mater. Res. Bull. 16, 179 (1981).CrossRefGoogle Scholar
5Weber, M. J., Layne, C. B., Saroyan, R. A., and Milam, D., Opt. Comm. 18, 171 (1976).CrossRefGoogle Scholar
6Stokowski, S. E., Martain, W. E., and Yarema, S. M., J. Non-Cryst. Solids 40, 481 (1980).CrossRefGoogle Scholar
7Galant, V. E., Fiz. Khim. Stekla 5, 604 (1979).Google Scholar
8Galant, V. E., Makarenko, N. M., Petrovskii, G. T., and Urusovskaya, L. N., Fiz. Khim. Stekla 8, 603 (1981).Google Scholar
9Tick, P. A., J. Am. Ceram. Soc. 66, 716 (1983).CrossRefGoogle Scholar
10Tick, P. A., Phys. Chem. Glasses 25, 149 (1984).Google Scholar
11Sun, K. H., U.S. Patent 2511225.Google Scholar
12Loehman, R. E., Treatise on Materials Science and Technology 26, 119 (1985).CrossRefGoogle Scholar
13Frischat, G. H., Krause, W., and Hubenthal, H., Comm. Am. Ceram. Soc. 67, C10 (1984).Google Scholar
14Marchand, R., J. Non-Cryst. Solids 56, 173 (1983).CrossRefGoogle Scholar
15Rajaram, M. and Day, D. E., J. Am. Ceram. Soc. 70, 203 (1987).CrossRefGoogle Scholar
16Vaughn, W. L. and Risbud, S. H., J. Mater. Sci. Lett. 3, 162 (1984).CrossRefGoogle Scholar
17Galant, V. E., Smirnova, E. V., and Urusovskaya, L. N., Fiz. i Khim. Stek. 8, 25 (1982).Google Scholar
18Pogosyan, M. A., Morozova, I. N., Kolobkov, V. P., and Khalilev, V. D., Fiz. i Khim. Stek. 6, 589 (1980).Google Scholar
19Videau, J. J., Portier, J., and Piriou, B., J. Non-Cryst. Solids 48, 385 (1982).CrossRefGoogle Scholar
20Fuxi, G., Yasi, J., and Fusong, J., J. Non-Cryst. Solids 52, 263 (1982).CrossRefGoogle Scholar
21Fuxi, G. and Haiyan, C., Mater. Sci. Forum 6, 495 (1985).Google Scholar
22Sammet, M. and Brückner, R., Glastech. Ber. 60, 55 (1987).Google Scholar
23Petrovskii, G. T., Urusovskaya, L. N., and Yudin, D. M., Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 1615 (1972).Google Scholar
24Turner, G. L., Kirkpatrick, R. J., Risbud, S. H., and Oldfield, E., Am. Ceram. Soc. Bull. 66, 656 (1987).Google Scholar
25Weyl, W. A., The Glass Industry 23, 135 (1942).Google Scholar
26Bertoluzza, A., Battaglia, M. A., Simoni, R., and Long, D., J. Raman Spectrosc. 14, 178 (1983).CrossRefGoogle Scholar
27Videau, J. J., Portier, J., and Piriou, B., J. Non-Cryst. Solids 48, 385 (1982).CrossRefGoogle Scholar
28Koudelka, L., Klikorka, J., Frumar, M., Pisarcik, M., Kello, V., Khalilev, V. D., Vakhrameev, V. I., and Chkhenkeli, G. D., J. Non-Cryst. Solids 85, 204 (1986).CrossRefGoogle Scholar
29Dubiel, M. and Ehrt, D., Phys. Stat. Sol. 100, 415 (1987).CrossRefGoogle Scholar
30Urusovskaya, L. N., Galimov, D. G., Sherstyuk, A. I., and Yudin, D.M., Izv. Akad. Nauk SSSR, Neorgan. Mater. 5, 1067 (1969).Google Scholar
31Menil, F., Fournes, L., Dance, J. M., and Videau, J. J., J. Non-Cryst. Solids 34, 209 (1979).CrossRefGoogle Scholar
32Galant, V. E., Smirnova, E.V., and Urusovskaya, L. N., Fiz. i Khim. Stek. 6, 321 (1980).Google Scholar
33Petrovskii, G.T., Urusovskaya, L. N., and Yudin, D. M., Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 1615 (1972).Google Scholar
34Olszewski, A.R., Tick, P. A., and Sanford, L. M., U.S. Patent 4362819.Google Scholar
35Müller, D., Berger, G., Grunze, I., Ladwig, G., Hallas, E., and Haubenreisser, U., Phys. Chem. Glasses 24, 37 (1983).Google Scholar
36Risbud, S. H., Kirkpatrick, R. J., Taglialavore, A. P., and Montez, B., J. Am. Ceram. Soc. 70, C10 (1987).CrossRefGoogle Scholar