Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T16:34:08.834Z Has data issue: false hasContentIssue false

Mechanical alloying of Al—Ti powder mixtures and their subsequent consolidation

Published online by Cambridge University Press:  31 January 2011

T. Itsukaichi
Affiliation:
Graduate School, Toyohashi University of Technology, Tempaku-cho, Toyohashi, AICHI, 441 Japan
K. Masuyama
Affiliation:
Toyama National College of Technology, Hongoh-machi, Toyama, TOYAMA, 939 Japan
M. Umemoto
Affiliation:
Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, AICHI, 441 Japan
I. Okane
Affiliation:
Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, AICHI, 441 Japan
J.G. CabañTas-Moreno
Affiliation:
Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, AICHI, 441 Japan
Get access

Abstract

Mechanically alloyed mixtures of elemental Al and Ti powders have been characterized in the as-milled condition, as well as after hot consolidation. Ball-milling in an argon atmosphere first induces alloying of the elements, followed by the formation of a certain amount of an amorphous-like phase. This amount increases as the equiatomic composition is approached. However, milling in nonsealed mills usually leads to the production of some form of titanium nitride, particularly in Ti-rich mixtures. In the consolidated products obtained from long-milled powders, intermetallic compounds were found to be the predominant phases. The existence of an amorphous phase in the as-milled powders considerably facilitates their hot consolidation.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schultz, L., Mater. Sci. Eng. 97, 15 (1988).CrossRefGoogle Scholar
2Park, Y.H., Hashimoto, H., and Watanabe, R., Mater. Sci. Forum 8890, 59 (1992).CrossRefGoogle Scholar
3El-Eskandarany, M. S., Aoki, K., and Suzuki, K., Mater. Sci. Forum 8890, 81 (1992).CrossRefGoogle Scholar
4Kobayashi, S. and Kimura, H., Mater. Sci. Forum 8890, 97 (1992).CrossRefGoogle Scholar
5Guo, W., Martelli, S., Padella, F., Magini, M., Burgio, N., Paradiso, E., and Franzoni, U., Mater. Sci. Forum 8890, 139 (1992).CrossRefGoogle Scholar
6Ahn, J.-H., Chung, H. S., Watanabe, R., and Park, Y. H., Mater. Sci. Forum 8890, 347 (1992).CrossRefGoogle Scholar
7Qi, M., Zhu, M., Li, G. B., Yang, D. Z., and Kuo, K. H., Mater. Sci. Forum 8890, 355 (1992).CrossRefGoogle Scholar
8Saji, S., Abe, S., and Matsumoto, K., Mater. Sci. Forum 8890, 367 (1992).CrossRefGoogle Scholar
9Inoue, N., Ishihara, K. N., and Shingu, P.H., in Proc. 1st Jpn. Int. SAMPE Symp. (Society for the Advancement of Material and Processing Engineering, 1989, Chiba, Japan), p. 13.Google Scholar
10Guo, W., Martelli, S., Burgio, N., Magini, M., Padella, F., Paradiso, E., and Soletta, I., I. Mater. Sci. 26, 6190 (1990).Google Scholar
11Oehring, M., Yan, Z. H., Klassen, T., and Bormann, R., Phys. Status Solidi (a) 131, 671 (1992).CrossRefGoogle Scholar
12Tokizane, M. and Miyazaki, A., in Proc. Int. Symp. on Intermetallic Compounds (Japan Institute of Metals, Sendai, Japan, 1991), p. 1015.Google Scholar
13Srinivasan, S., Desch, P.B., and Schwarz, R. B., Scripta Metall. Mater. 25, 2513 (1991).Google Scholar
14Nash, P., Kim, H., Choo, H., Ardy, H., Hwang, S. J., and Nash, A. S., Mater. Sci. Forum 8890, 603 (1992).CrossRefGoogle Scholar
15Cocco, G., Soletta, I., Battezzati, L., Baricco, M., and Enzo, S., Philos. Mag. B61, 473 (1990).Google Scholar
16El-Eskandarany, M. S., Sumiyama, K., Aoki, K., and Suzuki, K., J. Jpn. Soc. Powder Powder Metall. 39, 836 (1992).CrossRefGoogle Scholar
17Suzuki, T., Ino, T., and Nagumo, M., Mater. Sci. Forum 8890, 639 (1992).CrossRefGoogle Scholar
18Suryanarayana, C., Chen, G.-H., and Froes, F. H., Scripta Metall. Mater. 26, 1727 (1992).Google Scholar
19Itsukaichi, T., Shiga, S., Masuyama, K., Umemoto, M., and Okane, I., Mater. Sci. Forum 8890, 631 (1992).CrossRefGoogle Scholar
20JCPDS file no. 5–678, International Center for Diffraction Data, Swarthmore, PA, 1991.Google Scholar
21Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., in Advances in Powder Metallurgy (Metals Powder Industries Federation, Princeton, NJ, 1990), Vols. 1–3, p. 111.Google Scholar
22Schwarz, R. B. and Petrich, R. R., J. Less-Comm. Metals 140, 171 (1988).Google Scholar
23Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
24JCPDS file no. 6–0642, International Center for Diffraction Data, Swarthmore, PA, 1991.Google Scholar
25JCPDS file no. 37–1449, International Center for Diffraction Data, Swarthmore, PA, 1991.Google Scholar
26JCPDS file no. 14–451, International Center for Diffraction Data, Swarthmore, PA, 1991.Google Scholar
27Itsukaichi, T., Ohura, S., Cabanas-Moreno, J. G., Umemoto, M., and Okane, I., Mater. Sci. Technol. (1993, in press).Google Scholar
28Park, Y.H., Hashimoto, H., Watanabe, R., Ahn, J.H., and Chung, H.S., Mater. Sci. Forum 8890, 155 (1992).CrossRefGoogle Scholar
29Park, Y. H., Hashimoto, H., and Watanabe, R., J. Jpn. Soc. Powder Powder Metall. 39, 884 (1992).CrossRefGoogle Scholar