Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T23:41:31.641Z Has data issue: false hasContentIssue false

Mechanical behavior of MgO-whisker reinforced (Bi, Pb)2Sr2Ca2Cu3Oy high-temperature superconducting composite

Published online by Cambridge University Press:  31 January 2011

Y. S. Yuan
Affiliation:
Department of Mechanical Engineering, and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–4792
M. S. Wong
Affiliation:
Department of Mechanical Engineering, and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–4792
S. S. Wang
Affiliation:
Department of Mechanical Engineering, and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–4792
Get access

Abstract

The inherently weak mechanical properties of bulk monolithic high-temperature superconductors (HTS) have been a concern. Properly selected reinforcements in fiber and whisker forms have been introduced to the HTS ceramics to improve their mechanical properties. In this paper, mechanical behavior of a MgO-whisker reinforced Pb-doped Bi-2223 (BPSCCO) HTS composite fabricated by a solid-state processing method is studied. The (MgO)w/BPSCCO HTS composite has been shown to exhibit excellent superconducting properties. Elastic properties, strengths, and notched fracture toughnesses of both the monolithic BPSCCO and the (MgO)w/BPSCCO HTS composite are investigated. Detailed mechanical properties are reported for the first time for the (MgO)w/BPSCCO HTS composite. Mechanisms of strengthening and toughening in the MgO-whisker-reinforced HTS composite are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dorri, B., Herd, K., Laskaris, E. T., Tkaczyk, J.E., and Lay, K. W., IEEE Trans. Magn. 27, 18581860 (1991).CrossRefGoogle Scholar
2.Thuries, E., Pham, V. D., Laumond, Y., Verhaege, T., Fevrier, A., Collet, M., and Bekhaled, M., IEEE Trans., Power Delivery 6, 801808 (1991).Google Scholar
3.Tanaka, S., in Phenomenology and Applications of High-Temperature Superconductors, edited by Bedell, K. S., Inui, M., Meltzer, D., Schrieffer, J.R., and Doniach, S. (Addison-Wesley Publishing Company, Reading, MA, 1992).Google Scholar
4.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56, 397399 (1990).Google Scholar
5.Goyal, A., Funkenbusch, P. D., Kroeger, D. M., and Burns, S. J., J. Appl. Phys. 71, 23632367 (1992).Google Scholar
6.Ihm, M. K., Powell, B. R., and Bloink, R. L., J. Mater. Sci. 25, 16641674 (1990).Google Scholar
7.Chu, C-Y., Routbort, J. L., Chen, N., Biondo, A. C., Kupper-man, D. S., and Goretta, K. C., Supercond. Sci. Technol. 5, 306312 (1992).CrossRefGoogle Scholar
8.Murayama, N., Kodama, Y., Sakaguchi, S., and Wakai, F., J. Mater. Res. 7, 3437 (1992).Google Scholar
9.Lee, D. F., Ph.D. Dissertation, University of Houston (1992).Google Scholar
10.Singh, J. P., Leu, H. J., Poeppel, R. B., Vanvoorhees, E., Goudey, G. T., Winsley, K., and shi, Douglu, J. Appl. Phys. 66, 31543159 (1988).CrossRefGoogle Scholar
11.Goretta, K. C., Kullburg, M. L., Bar, D., Risch, G. A., and Routbort, J.L., Supercond. Sci. Technol. 4, 544547 (1991).Google Scholar
12.Evans, A. G. and Marshall, D. B., in Fiber Reinforced Ceramic Composites, edited by Mazdiyasni, K. S. (Noyes Publications, Park Ridge, NJ, 1990), pp. 139.Google Scholar
13.Homeny, J., in Ceramic-Matrix Composites, edited by Warren, R. (Blackie and Son, Glasgow, 1992), pp. 245270.Google Scholar
14.Wong, M.S., Miyase, A., Yuan, Y.S., and Wang, S.S., J. Am. Ceram. Soc. 77 (11), 28332840 (1994).CrossRefGoogle Scholar
15.Miyase, A., Yuan, Y. S., Wong, M. S., Schon, J., and Wang, S. S., Supercond. Sci. Technol. 8, 626637 (1995).CrossRefGoogle Scholar
16.Dou, S. X., Liu, H. K., Guo, S. J., Easterling, K. E., and Mikael, J., Supercond. Sci. Technol. 2, 274278 (1989).Google Scholar
17.Wang, S. S., in TCSUH HTS Technical Program Review, Texas Center for Superconductivity at the University of Houston, March 26–28 (1991), Sec. 5.Google Scholar
18.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. 11, 817 (1996).Google Scholar
19.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. 11, 1827 (1996).Google Scholar
20.Yuan, Y. S., Wong, M.S., and Wang, S.S., Physica C 250, 247255 (1995).CrossRefGoogle Scholar
21.Soylu, B., Adamopoulos, N., Glowacka, D. M., and Evetts, J.E., Appl. Phys. Lett. 60 (25), 31833185 (1992).Google Scholar
22.Brubaker, B. D., United States Patent No. 3 711 599 (1973).Google Scholar
23.Whitney, J. M., Daniel, I. M., and Pipes, R. B., Experimental Mechanics of Fiber Reinforced Composite Materials, Revised Edition (The Society for Experimental Mechanics, Brookfield Center, CT, 1984), Chap. 4.Google Scholar
24.ASTM Standard E. 399–83, American Society for Testing of Materials, Philadelphia, PA (1983).Google Scholar
25.Griffith, A. A., Philos. Trans., R. Soc. London A 221, 163 (1920).Google Scholar