Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:33:06.632Z Has data issue: false hasContentIssue false

Mechanism of 1:1 nonstoichiometric short-range ordering in La-doped Pb(Mg1/3Nb2/3)O3 relaxor ferroelectrics

Published online by Cambridge University Press:  26 July 2012

Kyu-Mann Lee
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Woo-Jin Park
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The mechanism of the 1:1 nonstoichiometric short-range ordering in donor-doped Pb(B′1/3B″1/3)O3-type relaxor perovskites was examined using the La2O3-doped Pb(Mg1/3Nb2/3)O3 (PMN) system as a typical example. Based on the dielectric analysis and the transmission electron microscopy (TEM) observation, the observed increase in the degree of diffuse phase transition (DPT) in the presence of La2O3 was interpreted as the enhancement of the 1:1 nonstoichiometric short-range ordering accompanied with the growth of the negatively charged nanodomains. The mechanism of the defect process responsible for the 1:1 nonstoichiometric short-range ordering was elucidated by analyzing the electrical conductivity of the La-doped PMN system as a function of the partial pressure of oxygen. It was shown that the substitution of La3+ ions for Pb2+ ions in the A-site sublattice of perovskite PMN produced the positively charged sites with a concomitant generation of electrons for the electronic compensation. This expedites the growth of the nonstoichiometrically ordered nanodomains in a disordered matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, K-M. and Jang, H. M., J. Mater. Res. 12, 1614 (1997).CrossRefGoogle Scholar
2.Harmer, M. P., Chen, J., Peng, P., Chan, H. M., and Smyth, D. M., Ferroelectrics 97, 263 (1989).CrossRefGoogle Scholar
3.Chen, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 72, 593 (1989).CrossRefGoogle Scholar
4.Hilton, A. D., Barber, D. J., Randall, C. A., and Shrout, T. R., J. Mater. Sci. 25, 3461 (1990).CrossRefGoogle Scholar
5.Jang, H. M., Lee, K-M., and Lee, M-H., J. Mater. Res. 9, 2634 (1994).CrossRefGoogle Scholar
6.Wu, Z., Gui, Z., Li, L., and Zhang, X., J. Appl. Phys. 72, 5822 (1992).CrossRefGoogle Scholar
7.Viehland, D. and Li, J-F., J. Appl. Phys. 74, 4121 (1993).CrossRefGoogle Scholar
8.Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
9.Kim, N., Huebner, W., Jang, S-J., and Shrout, T. R., Ferroelectrics 93, 341 (1989).CrossRefGoogle Scholar
10.Smolenskii, G. M., Proc. 2nd Int. Meet. Ferroelectr. (IMF-2) (1970), p. 26.Google Scholar
11.Rolov, B. N.,Sov. Phys.-Solid State (Engl. Transl.) 6, 1676 (1965).Google Scholar
12.Pilgrim, S. M., Sutherland, A. E., and Winzer, S. R., J. Am. Ceram. Soc. 73, 3122 (1990).CrossRefGoogle Scholar
13.Wang, H-C. and Schulze, W. A., J. Am. Ceram. Soc. 73, 825 (1990).CrossRefGoogle Scholar
14.Setter, N. and Cross, L. E., J. Appl. Phys. 51, 4356 (1980).CrossRefGoogle Scholar
15.Groves, P., J. Phys. C: Solid State Phys. 19, 118 (1986).Google Scholar
16.Lin, L. and Wu, T., J. Am. Ceram. Soc. 73, 1253 (1990).CrossRefGoogle Scholar
17.Macdonald, J. R., Impedance Spectroscopy (John Wiley & Sons, 1987), Chap. 4.Google Scholar
18.Irvine, J. T. S., Huanosta, A., Valenzuela, R., and West, A. R., J. Am. Ceram. Soc. 73 (3), 729 (1990).CrossRefGoogle Scholar
19.Jang, H. M. and Lee, K-M., J. Mater. Res. 10, 3185 (1995).CrossRefGoogle Scholar
20.Dudek, J. and Wróbel, Z., Ferroelectrics 18, 161 (1978).CrossRefGoogle Scholar