Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T03:52:56.505Z Has data issue: false hasContentIssue false

A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation

Published online by Cambridge University Press:  31 January 2011

Ting Y. Tsui
Affiliation:
Department of Materials Science, Rice University, 6100 S. Main St., Houston, Texas 77005
C. A. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, 13–4005 Cambridge, Massachusetts 02139
G. M. Pharr
Affiliation:
Department of Materials Science & Engineering, The University of Tennessee and Oak Ridge National Laboratory, 434 Dougherty Engineering Building, Knoxville, Tennessee 37996
Get access

Abstract

A new method for making substrate-independent hardness measurements by nanoindentation techniques that applies to soft metallic films on very hard substrates is presented. The primary issue to be addressed is substrate-induced enhancement of indentation pileup and the ways it influences the indentation contact area. On the basis of experimental observations of soft aluminum films deposited on silicon, glass, and sapphire substrates, an empirical relationship was derived that relates the amount of pileup to the contact depth. From this relationship and the associated experimental observations, a method was developed that allows the intrinsic hardness of the film to be estimated, even when the indenter penetrates through the film into the substrate. The method should prove useful for very thin films (<100 nm) in which it is not possible to make measurements at penetration depths small enough to avoid subtrate effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C., McHargue, C.J., Zinkle, S.J., Thin Solid Films 153, 185 (1987).CrossRefGoogle Scholar
2.Oliver, W.C. and Mc, C.J.Hargue, Thin Solid Films 161, 117 (1988).CrossRefGoogle Scholar
3.Gorbatkin, S.M., Rhodes, R.L., Tsui, T.Y., and Oliver, W.C., Appl. Phys. Lett. 65, 2672 (1994).CrossRefGoogle Scholar
4.Shen, T.D., Koch, C.C., Tsui, T.Y., and Pharr, G.M., J. Mater. Res. 10, 2892 (1995).CrossRefGoogle Scholar
5.Tabbal, M., Merel, P., Chaker, M., Khakani, M.A. El, Herbert, E.G., Lucas, B.N., and O’Hern, M.E., J. Appl. Phys. 85, 3860 (1999).CrossRefGoogle Scholar
6.Hainsworth, S.V., McGurk, M.R., Page, T.F., Surf. Coat. Technol. 102, 97 (1998).CrossRefGoogle Scholar
7.Bhattacharya, A.K. and Nix, W.D., Int. J. Solids Struct. 24, 1287 (1988).CrossRefGoogle Scholar
8.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 41 (1987).CrossRefGoogle Scholar
9.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 51 (1987).CrossRefGoogle Scholar
10.Jonsson, B. and Hogmark, S., Thin Solid Films 114, 257 (1984).CrossRefGoogle Scholar
11.King, R.B., Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
12.Gao, H., Chui, C-H., Lee, J., Int. J. Solids Struct. 29, 2471 (1992).Google Scholar
13.Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T.W., Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
14.Tsui, T.Y., Ross, C.A., and Pharr, G.M., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E., Jr., and Sou, Z. (Mater. Res. Soc. Symp. Proc. 473, Warrendale, PA, 1997), p. 57.Google Scholar
15.Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 14, 292 (1999).CrossRefGoogle Scholar
16.Bec, S., Tonck, A., Georges, J-M., Georges, E., Loubet, J-L., Philos. Mag. A 74, 1061 (1996).CrossRefGoogle Scholar
17.Randall, N.X., Philos. Mag. A 82, 1883 (2002).CrossRefGoogle Scholar
18.Lim, Y.Y. and Chaudhri, M.M., J. Mater. Res. 14, 2314 (1999).CrossRefGoogle Scholar
19.Bolshakov, A. and Pharr, G.M., J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
20.Pharr, G.M. and Bolshakov, A., J. Mater. Res. 17, 2660 (2002).CrossRefGoogle Scholar
21.Laursen, T.A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
22.Miyahara, K., Nagashima, N., and Matsuoka, S., Philos. Mag. A 82, 2149 (2002).CrossRefGoogle Scholar
23.Fontaine, W.R. La, Yost, B., and Li, C-Y., J. Mater. Res. 5, 776 (1990).CrossRefGoogle Scholar
24.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
25.Tsui, T.Y., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
26.McElhaney, K.W., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 13, 1300 (1998).CrossRefGoogle Scholar
27.Tsui, T.Y., Oliver, W.C., and Pharr, G.M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Warrendale, PA, 1997), p. 207.Google Scholar