Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:22:29.707Z Has data issue: false hasContentIssue false

Microstructure and mechanical behavior of Al–Mg/Ni–P composites

Published online by Cambridge University Press:  31 January 2011

V. Raman
Affiliation:
IBM Corporation, General Products Division, San Jose, California 95193
Get access

Abstract

The microstructure and mechanical behavior of electroless deposited Ni–P on Al–Mg substrates were investigated. The microstructures of the as-deposited and annealed samples were characterized through optical and scanning electron microscopy. Hardness measurements were made both on the Al–Mg substrate and the Ni–P coating using a depth sensing hardness machine. The plastic deformation behavior of the composites was studied and the results show that the initial deformation is accompanied by the appearance of serrations on load-displacement curves. Decohesion of the hard Ni–P takes place at large strains. An estimate of the ultimate shear strength of the Al–Mg/Ni–P interface was made and the strength of the interface was determined to be −0.45 GPa. The tribological properties of the amorphous Ni–P were studied using ball-on-disk and slider-on-disk tests. In particular, the influences of humidity, surface roughness, and heat treatment on friction and durability of the coatings were investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brenner, A. and Riddell, G., Proc. 33rd AES Ann. Conf., 23 (1946).Google Scholar
2Mallory, G. O., Plat. Surf. Finish 63, 34 (1976).Google Scholar
3Schmeckenbecher, A. F., J. Electrochem. Soc. 133, 778 (1966).CrossRefGoogle Scholar
4Koiwa, I., Usuda, M., and Osaka, T., J. Electrochem. Soc. 135, 1222 (1988).CrossRefGoogle Scholar
5Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
6Chen, H. S. and Polk, D. L., J. Non-Cryst. Solids 15, 174 (1974).CrossRefGoogle Scholar
7Donovan, P. E. and Stubbs, W. M., Acta Metall. 29, 1419 (1981).CrossRefGoogle Scholar
8Staudinger, A. and Nakahara, S., Thin Solid Films 45, 125 (1977).CrossRefGoogle Scholar
9Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
10Pethica, J., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
11Wang, R., Bull. Alloy Phase Diagrams 2, 269 (1981).CrossRefGoogle Scholar
12Pittermann, U. and Ripper, S., Phys. Status Solidi A 93, 131 (1986).CrossRefGoogle Scholar
13Ng, P., Snyder, D. D., La, J., Clemens, Sala B., and Fuerst, C., J. Electrochem. Soc. 135, 1376 (1988).CrossRefGoogle Scholar
14Koster, U. and Herold, U., Topics in Applied Physics, edited by Guntherodt, H. J. and Beck, H. (Springer-Verlag, Berlin, 1981), Vol. 46, p. 225.Google Scholar
15Vafaei-Makhsoos, E., Thomas, E. L., and Toth, L. E., Metall. Trans. A 9A, 1449 (1978).CrossRefGoogle Scholar
16Bagley, B. G. and Turnbull, D., J. Appl. Phys. 39, 5681 (1968).CrossRefGoogle Scholar
17Horiuchi, R. and Yoshinaga, H., Trans. Jpn. Inst. Metals 6, 131 (1972).CrossRefGoogle Scholar
18Pampillo, C. A. and Chen, H. S., Mater. Sci. Eng. 13, 181 (1974).CrossRefGoogle Scholar
19Chen, H. S., Scripta Metall. 7, 931 (1973).CrossRefGoogle Scholar
20Pampillo, C. A., J. Mater. Sci. 10, 1194 (1975).CrossRefGoogle Scholar
21Agrawal, D. C. and Raj, R., Acta Metall. 37, 1265 (1989).CrossRefGoogle Scholar
22Bhushan, B. and Doerner, M. F., ASME J. Tribology 111, 452 (1989).CrossRefGoogle Scholar
23Morris, D. G., J. Mater. Sci. 17, 1789 (1982).CrossRefGoogle Scholar
24Zum Gahr, K. H., Z. Metallic. 73, 267 (1982).Google Scholar
25Raman, V., unpublished research (1989).Google Scholar
26Bentley, R. M. and Duquette, D. J., Fundamentals of Friction and Wear of Materials, edited by Rigney, D. A. (ASM, Metals Park, OH, 1980), p. 291.Google Scholar
27Savage, R. H. and Schaefer, D. L., J. Appl. Phys. 27, 136 (1956).CrossRefGoogle Scholar
28Enke, K., Dimigen, H., and Hubsch, H., Appl. Phys. Lett. 36, 291 (1980).CrossRefGoogle Scholar
29Tabor, D., J. Lubr. Tech. 103, 169 (1981).CrossRefGoogle Scholar
30Furey, M. J., A.S.L.E. Trans. 6, 49 (1963).CrossRefGoogle Scholar
31Rigney, D. A. and Hirth, J. P., Wear 53, 345 (1979).CrossRefGoogle Scholar
32Suh, N. P. and Sin, H-C., Wear 69, 91 (1981).CrossRefGoogle Scholar
33Lim, S. C., Ashby, M. F., and Brunton, J. H., Acta Metall. 37, 767 (1989).CrossRefGoogle Scholar
34Goretta, K. C., Routbort, J. L., Mayer, A., and Schwarz, R. B., J. Mater. Res. 2, 818 (1987).CrossRefGoogle Scholar
35Shoufu, L., Erming, M., and Peng, L.Xing, J. Vac. Sci. Tech. A4, 2862 (1986).CrossRefGoogle Scholar
36Gawne, D. T. and Ma, U., Wear 120, 125 (1987).CrossRefGoogle Scholar
37Morris, D. G., Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, Amsterdam, 1985), p. 1775Google Scholar