Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T22:18:31.796Z Has data issue: false hasContentIssue false

Microstructure and misfit relaxation in SrTiO3/SrRuO3 bilayer films on LaAlO3(100) substrates

Published online by Cambridge University Press:  31 January 2011

J. S. Wu
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
C. L. Jia
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
J. H. Hao
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
X. X. Xi
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

We studied the microstructure of SrTiO3/SrRuO3 bilayer films on (001) LaAlO3 substrates by high-resolution transmission electron microscopy. At the SrRuO3/LaAlO3 interface a defect configuration of stacking faults and nanotwins bounding either Frank partial dislocations or Shockley partial dislocations and complex interaction between these planar defects were found to be the dominant means of misfit accommodation. The misfit in the SrTiO3/SrRuO3 system, however, is mainly accommodated by elastic strain. Most of the observed defects in the SrTiO3 layer can be related to the [111] planar defects in the SrRuO3 layer propagating and reaching the SrTiO3/SrRuO3 interface. Furthermore, a [110] planar defect can also be introduced in the SrTiO3 layer due to the structure change of the SrTiO3/SrRuO3 interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eom, C.B., Cava, R.J., Fleming, R.M., Philips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W. P., Krajewski, J.J., and Peck, W.F. Jr, Science 258, 1766 (1993).CrossRefGoogle Scholar
2.Wu, X.D., Foltyn, S.R., Dye, R.C., Coulter, Y., and Muenchausen, R.E., Appl. Phys. Lett. 62, 2434 (1993).CrossRefGoogle Scholar
3.Antognazza, L., Char, K., Geballe, T.H., King, L.L. H., and Sleight, A.W., Appl. Phys. Lett. 63, 1005 (1993).Google Scholar
4.Domel, R., Jia, C.L., Competti, C., Ockenfuss, G., and Branginski, A.I., Supercond. Sci. Technol. 7, 277 (1994).CrossRefGoogle Scholar
5.Eom, C.B., Van Dover, R.B., Julia Philips, M., Marshall, D.J., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).Google Scholar
6.Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).Google Scholar
7.Neville, R.C., Hoeneisen, B., and Mead, C.A., J. Appl. Phys. 43, 2124 (1972).CrossRefGoogle Scholar
8.Vendik, O.G., Ter-Martirosyanm, L.T., Dedyk, A.I., Karmanenko, S.F., and Chakalov, R.A., Ferroelectrics 144, 33 (1993).CrossRefGoogle Scholar
9.Selmi, F., Hughes, R., Varadan, V.K., and Varadan, V.V., Proc. SPIE 1916, 180 (1993).CrossRefGoogle Scholar
10.Findikoglu, A.T., Dought, C., Anlage, S.M., Li, Qi, X.X. Xi, and Venkatesan, T., J. Appl. Phys. 76, 2937 (1994).Google Scholar
11.Mueller, C.H., Treece, R.E., Rivkin, T.V., Miranda, F.A., Moutinho, H.R., Swartzlander-Franz, A., Dalberth, M., and Rogers, C.T., IEEE Trans. Appl. Supercond. 7, 3512 (1997).Google Scholar
12.Li, H.C., Si, W.D., West, A.D., and X.X. Xi, Appl. Phys. Lett. 73, 190 (1998).CrossRefGoogle Scholar
13.Matthews, J.W., in Dislocations in Solids, edited by Nabarro, F.R. N. (North-Holland, Amsterdam, The Netherlands, 1979), Chap. 7.Google Scholar
14.Marshall, A.F., Char, K., Barton, R.W., Kapitulnik, A., and Laderman, S.S., J. Mater. Res. 5, 2049 (1990).CrossRefGoogle Scholar
15.Pompe, W., Gong, X., Suo, Z., and Speak, J.S., J. Appl. Phys. 74, 6012 (1993).CrossRefGoogle Scholar
16.Stemmer, S., Streiffer, S.K., Ernst, F., and Ruähle, M., Phys. Status Solidi A 147, 135 (1995).CrossRefGoogle Scholar
17.Suzuki, T., Nishi, Y., and Fujimoto, M., Philos. Mag. A 79, 2461 (1999).CrossRefGoogle Scholar
18.Jiang, J.C., Tian, W., Pan, X.Q., Gan, Q., and Eom, C.B., Appl. Phys. Lett. 72, 909 (1998).Google Scholar
19.Lu, P., Chu, F., Jia, Q.X., and Mitchell, T.E., J. Mater. Res. 13, 2302 (1998).Google Scholar
20.Kilaas, R., Proc. 45th Annual EMSA meeting, Baltimore, MD, edited by Bailey, G.W. (San Francisco Press, San Francisco, CA 1987), p. 66.Google Scholar
21.Eibl, O., Pongratz, P., and Skalicky, P., Philos. Mag. B 57, 521 (1988).CrossRefGoogle Scholar
22.Jia, C.L., Urban, K., Mertin, M., Hoffmann, S., and Waser, A., Philos. Mag. A 77, 923 (1998).Google Scholar
23.Suzuki, T., Nishi, Y., and Fujimoto, M., Philos. Mag. A 79, 2461 (1999).CrossRefGoogle Scholar
24.Wan, X.Y., Liang, J.W., Liu, M.L., and Jin, X.L., Phys. Rev. B 55, 9259 (1997).Google Scholar
25.Wu, J.S., Jia, C.L., Urban, K., Hao, J.H., and X.X. Xi, Philos. Mag. Lett. 81, 375 (2001).Google Scholar
26.Wu, J.S., Jia, C.L., Urban, K., Hao, J.H., and X.X. Xi, J. Cryst. Growth, in press.Google Scholar
27.Wu, J.S., Jia, C.L., Urban, K., Hao, J.H., and X.X. Xi, Philos. Mag. A (in press).Google Scholar
28.Wu, J.S., Jia, C.L., Urban, K., Hao, J.H., and Xi, X.X., J. Appl. Phys. 89, 5653 (2001).CrossRefGoogle Scholar