Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T11:50:34.050Z Has data issue: false hasContentIssue false

The microstructure of continuously processed Yba2Cu3Oy coated conductors with underlying CeO2 and ion-beam-assisted yttria-stabilized zirconia buffer layers

Published online by Cambridge University Press:  31 January 2011

T. G. Holesinger
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. N. Arendt
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Q. X. Jia
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. M. Dickerson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. C. Dowden
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. F. DePaula
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. R. Groves
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Y. Coulter
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The microstructural development of YBa2Cu3Oy (Y-123) coated conductors based on the ion-beam-assisted deposition (IBAD) of yttria-stabilized zirconia (YSZ) to produce a biaxially textured template is presented. The architecture of the conductors was Y-123/CeO2/IBAD YSZ/Inconel 625. A continuous and passivating Cr2O3 layer forms between the YSZ layer and the Inconel substrate. CeO2 and Y-123 are closely lattice-matched, and misfit strain is accommodated at the YSZ/CeO2 interface. Localized reactions between the Y-123 film and the CeO2 buffer layer result in the formation of BaCeO3, YCuO2, and CuO. The positive volume change that occurs from the interfacial reaction may act as a kinetic barrier that limits the extent of the reaction. Excess copper and yttrium generated by the interfacial reaction appear to diffuse along grain boundaries and intercalate into Y-123 grains as single layers of the Y-247, Y-248, or Y-224 phases. The interfacial reactions do not preclude the attainment of high critical currents (Ic) and current densities (Jc) in these films nor do they affect to any appreciable extent the nucleation and alignment of the Y-123 film.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., Mannhart, J., and Le, F.K.Goues, Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
3.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
4.Reade, R.P., Berdahl, P., Russo, R.E., and Garrison, S.M., Appl. Phys. Lett. 61, 2231 (1992).CrossRefGoogle Scholar
5.Wu, X.D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I.H., Tiwari, P., Coulter, Y., and Peterson, D.E., Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar
6.Hasegawa, K., Fujino, K., Mukai, H., Konishi, M., Hayashik, K., Sata, K., Honjo, S., Sato, Y., Ishii, H., and Iwata, Y., Appl. Supercond. 4, 487 (1998).CrossRefGoogle Scholar
7.Yoshino, H., Yamazaki, M., Fuke, H., Thanh, T.D., Kudo, Y., Ando, K., and Oshima, S., in Advances in Superconductivity VI, edited by Fujita, T. and Shiohara, Y. (Springer-Verlag, Tokyo, 1994), p. 759.CrossRefGoogle Scholar
8.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
9.Venkatesan, T., Chang, C.C., Dijkkamp, D., Ogale, S.B., Chase, E.W., Farrow, L.A., Hwang, D.M., Miceli, P.F., Schwarz, S.A., Taracson, J.M., Wu, X.D., and Inam, A., J. Appl. Phys. 63, 4591 (1988).CrossRefGoogle Scholar
10.Wordenweber, R., Supercond. Sci. Technol. 12, R86 (1999).CrossRefGoogle Scholar
11.Foltyn, S.R., Arendt, P.N., Dowden, P.C., DePaula, R.F., Groves, J.R., Coulter, J.Y., Jia, Q., Maley, M.P., and Peterson, D.E., IEEE Trans. Appl. Supercond. 9, 1519 (1999).CrossRefGoogle Scholar
12.Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., Appl. Supercond. 4, 475 (1998).CrossRefGoogle Scholar
13.Arendt, P.N., Foltyn, S.R., Groves, J.R., DePaula, R.F., Dowden, P.C., Roper, J.M., and Coulter, J.Y., Appl. Supercond. 4, 429 (1996).CrossRefGoogle Scholar
14.Foltyn, S.R., Tiwari, P., Dye, R.C., Le, M.Q., and Wu, X.D., Appl. Phys. Lett. 63, 1848 (1993).CrossRefGoogle Scholar
15.Holesinger, T.G., Kung, H., Foltyn, S.R., Arendt, P.N., Jia, Q.X., Peterson, E.J., Bingert, J.F., Smith, J.F., Dickerson, R.M., Dowden, P.C., DePaula, R.F., Groves, J.R., and Coulter, J.Y., in International Workshop on Critical Currents IWCC-99, edited by Suenaga, M. and Clem, J.R. (University of Wisconsin, Madison, WI, 1999), p. 70 (extended abstract).Google Scholar
16.Reade, R.P., Mao, X.L., and Russo, R.E., Appl. Phys. Lett. 59, 739 (1991).CrossRefGoogle Scholar
17.Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
18.Cheung, C.T. and Ruckenstein, E., J. Mater. Res. 4, 1 (1989).CrossRefGoogle Scholar
19.Yan, M.F., Rhodes, W.W., and Gallagher, P.K., J. Appl. Phys. 63, 821 (1988).CrossRefGoogle Scholar
20.Tietz, L.A., Carter, C.B., Lathrop, D.K., Russek, S.E., Buhrman, R.A., and Michael, J.R., J. Mater. Res. 4, 1072 (1989).CrossRefGoogle Scholar
21.Skofronick, G.L., Carim, A.H., Foltyn, S.R., and Muenchausen, R.E., J. Mater. Res. 8, 2785 (1993).CrossRefGoogle Scholar
22.Eibl, O. and Roas, B., J. Mater. Res. 5, 2620 (1990).CrossRefGoogle Scholar
23.Ramesh, R., Hwang, D.M., Barner, J.B., Nazar, L., Ravi, T.S., Inam, A., Dutta, B., Wu, X.D., and Venkatesan, T., J. Mater. Res. 5, 740 (1990).Google Scholar
24.Zandbergen, H.W., Gronsky, R., Wang, K., and Thomas, G., Nature 331, 596 (1988).CrossRefGoogle Scholar
25.Marshall, A.F., Barton, R.W., Char, K., Kapitulnik, A., Oh, B., and Hammond, R.H., Phys. Rev. B: Solid State 37, 9353 (1988).CrossRefGoogle Scholar
26.Char, K., Lee, M., Barton, R.W., Marshall, A.F., Bozovic, I., Hammond, R.H., Beasley, M.R., Geballe, T.H., Kapitulnik, A., and Laderman, S.S., Phys. Rev. B: Solid State 38, 834 (1988).CrossRefGoogle Scholar
27.Zandbergen, H.W., Wen, J.G., Traeholt, C., and Svetchnikov, V., J. Alloys Compd. 195, 85 (1993).CrossRefGoogle Scholar
28.Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L., Fan, Y., and Smith, J.F., Appl. Phys. Lett. 75, 3692 (1999).CrossRefGoogle Scholar
29.Wu, X.D., Dye, R.C., Muenchausen, R.E., Foltyn, S.R., Maley, M., Rollet, A.D., Garcia, A.R., and Nogar, N.S., Appl. Phys. Lett. 58, 2165 (1991).CrossRefGoogle Scholar
30.Merchant, P., Jacowitz, R.D., Tibbs, K., Taber, R.C., and Laderman, S.S., Appl. Phys. Lett. 60, 763 (1992).CrossRefGoogle Scholar
31.Cliff, G. and Lorimer, G.W., J. Microsc. 103, 203 (1975).CrossRefGoogle Scholar
32.Cima, M.J., Schneider, J.S., Peterson, S.C., and Coblenz, W., Appl. Phys. Lett. 58, 710 (1988).CrossRefGoogle Scholar
33.Marshall, A.F., Matijasevic, V., Rosenthal, P., Shinohara, K., Hammond, R.H., and Beasley, M.R., Appl. Phys. Lett. 57, 1158 (1990).CrossRefGoogle Scholar
34.Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A.F., Hammond, R.H., and Beasley, M.R., J. Mater. Res. 6, 682 (1991).CrossRefGoogle Scholar
35.Holesinger, T.G. (unpublished).Google Scholar
36.Ishkiguro, T., Ishikzawa, N., Mizutani, N., and Kato, M., J. Solid State Chem. 49, 232 (1983).CrossRefGoogle Scholar
37.Ramesh, R., Hwang, D.M., Venkatesan, T., Ravi, T.S., Nazar, L., Inam, A., Wu, X.D., Dutta, B., Thomas, G., Marshall, A.F., and Geballe, T.H., Science 247, 57 (1990).CrossRefGoogle Scholar
38.Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Appl. Phys. Lett. 71, 2955 (1997).CrossRefGoogle Scholar
39.Groves, J.R., Arendt, P.N., Foltyn, S.R., DePaula, R.F., Peterson, E.J., Holesinger, T.G., Coulter, J.Y., Springer, R.W., Wang, C.P., and Hammond, R.H., IEEE Trans. Appl. Supercond. 9, 1964 (1999).CrossRefGoogle Scholar