Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T19:33:16.906Z Has data issue: false hasContentIssue false

Monoclinic ZrO2 and its supported materials Co/Ni/ZrO2 for N2O decomposition

Published online by Cambridge University Press:  03 March 2011

H.C. Zeng*
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore
J. Lin
Affiliation:
Department of Physics, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore
W.K. Teo
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore
J.C. Wu
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore
K.L. Tan
Affiliation:
Department of Physics, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore
*
a)Address correspondence to this author.
Get access

Abstract

Monoclinic ZrO2 and its supported materials Co/Ni/ZrO2 (Co:Ni = 1:1) for catalytic decomposition of N2O have been studied with GC, FTIR, EDAX, XPS, and the evaluation of catalytic activity of the materials. It is found that monoclinic ZrO2 alone has the catalytic effect for N2O decomposition, although higher activities are found for Co/Ni/ZrO2 systems. XPS study shows that only Co exists in the surface region of ZrO2, which is attributed to the formation of NiO–ZrO2 solid solution resulting from an interdiffusion between Ni2+ and ZrO2 matrix. The gas decomposition on Co/Ni/ZrO2 can be described as first order with respect to partial pressure of N2O. Surface reactions on ZrO2 and Co/Ni/ZrO2 will also be addressed.

Type
Environmentally Benign Materials and Processes
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Thiemans, M. H. and Trogler, W. C., Science 251, 932 (1991).Google Scholar
2Li, Y. and Armor, J. N., Appl. Catal. B 1, L21 (1992); Appl. Catal. B 3, 55 (1993).Google Scholar
3Pomonis, P., Vatts, D., Lycourghiotis, A., and Kordulis, C., J. Chem. Soc, Faraday Trans. 1 81, 2043 (1985).Google Scholar
4Kobayashi, H. and Hara, K., in Catalysis Under Transient Conditions, edited by Bell, A. T. and Hegedus, L. L. (ACS Sym. Ser., 1982), p. 163.Google Scholar
5Aparicio, L. M., Ulla, M. A., Millman, W. S., and Dumesic, J. A., J. Catal. 110, 330 (1988).CrossRefGoogle Scholar
6Slinkin, A. A., Lavrovskaya, T. K., Mishin, I. V., and Rubinshtein, A. M., Kinet. Katal. 19, 992 (1978).Google Scholar
7Leglise, J., Petunchi, J. O., and Hall, W. K., J. Catal. 121, 422 (1990).Google Scholar
8Panov, G. I., Sobolev, V. I., and Kharitonov, S., J. Mol. Catal. 61, 85 (1990).Google Scholar
9Li, Y. and Armor, J. N., U.S. Patent 5 149 512 (1992); U.S. Patent 5171553 (1992).Google Scholar
10Klein, R. and Siegel, R., Surf. Sci. 92, 337 (1980).Google Scholar
11Raj, S. L., Viswanathan, B., and Srinivasan, V., Indian J. Chem. 21A, 689 (1982).Google Scholar
12Giamello, K., Volante, M., Fubini, B., Geobaldo, F., and Morterra, C., Mater. Chem. Phys. 29, 279 (1991).CrossRefGoogle Scholar
13Mercera, P. D. L., van Ommen, J.G., Doesburg, E. B.M., Burggraaf, A. J., and Ross, J.R.H., Appl. Catal. 71, 363 (1991).CrossRefGoogle Scholar
14Cimino, A., La Chimica el Industria 56, 27 (1974).Google Scholar
15Sundararajan, R. and Srinvasan, V., Appl. Catal. 73, 165 (1991).Google Scholar
16Eley, D. D., Klepping, A. H., and Moore, P. B., J. Chem. Soc, Faraday Trans. 1 81, 2981 (1985).Google Scholar
17Akbar, S. and Joyner, R. W., J. Chem. Soc. Faraday Trans. 1 77, 803 (1981).CrossRefGoogle Scholar
18Oku, M. and Sato, Y., Appl. Surf. Sci. 55, 37 (1992).Google Scholar
19Li, N., Tan, T. C., and Zeng, H. C., J. Electrochem. Soc. 140, 1068 (1993).CrossRefGoogle Scholar
20Lin, J., unpublished.Google Scholar
21Perry, E. M. and Cocke, D. L., Appl. Surf. Sci. 44, 321 (1990).CrossRefGoogle Scholar
22Gate, R. J. and Schmidt, L. D., Surf. Sci. 111, 348 (1981).Google Scholar
23Roberts, M. W., Adv. Catal. 29, 55 (1980).CrossRefGoogle Scholar
24Milton, D. B., Walton, J., and Thompson, G. E., Surf. Interf. Anal. 20, 36 (1993).Google Scholar
25Barr, T. L., J. Vac. Sci. Technol. A 9, 1793 (1991).CrossRefGoogle Scholar
26Zeng, H. C., Lin, J., Teo, W. K., and Tan, K. L., J. Non-Cryst. Solids (1994, in press).Google Scholar
27Zeng, H. C. and Shi, S., J. Non-Cryst. Solids (1994, in press).Google Scholar