Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:52:56.514Z Has data issue: false hasContentIssue false

Monolithic silsesquioxane materials with well-defined pore structure

Published online by Cambridge University Press:  01 December 2014

Kazuyoshi Kanamori*
Affiliation:
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
*
a)Address all correspondence to this author. e-mail: kanamori@kuchem.kyoto-u.ac.jp
Get access

Abstract

In this article, monolithic porous silsesquioxane materials, which are derived by sol–gel from trialkoxysilanes with substituent groups such as trimethoxysilane (HTMS), methyltrimethoxysilane (MTMS), and vinyltrimethoxysilane (VTMS), are reviewed with a special emphasis on our recent works. Careful controls over fundamental synthetic parameters such as pH, amounts of water and solvent, and kind of solvent and additives play a crucial role in the formation of monolithic gels based on random polysiloxane networks. Crystalline/amorphous precipitation is otherwise observed when the formation of isolated species including polyhedral oligomeric silsesquioxanes dominates or if phase separation of the hydrophobic networks in aqueous media is not adequately controlled. In the successfully controlled system, pore size can be varied from a few tens of nanometers to a few tens of micrometers; porous materials such as transparent aerogels and hierarchically porous monoliths have been explored. In addition, unique properties derived from trialkoxysilanes such as reactivity of the pore surface and flexible mechanical properties are demonstrated. Possibilities in the silsesquioxane materials with controlled pore structures are discussed.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sanchez, C. and Ribot, F.: Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 18, 5363 (2006).Google Scholar
Sanchez, C., Belleville, P., Popall, M., and Nicole, L.: Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 40, 696753 (2011).CrossRefGoogle ScholarPubMed
Sanchez, C., Boissiere, C., Cassaignon, S., Chaneac, C., Durupthy, O., Faustini, M., Grosso, D., Laberty-Robert, C., Nicole, L., Portehault, D., Ribot, F., Rozes, L., and Sassoye, C.: Molecular engineering of functional inorganic and hybrid materials. Chem. Mater. 26, 221238 (2014).CrossRefGoogle Scholar
Schmidt, H. and Wolter, H.: Organically modified ceramics and their applications. J. Non-Cryst. Solids 121, 428435 (1990).CrossRefGoogle Scholar
Novak, B.: Hybrid nanocomposite materials – Between inorganic glasses and organic polymers. Adv. Mater. 5, 422433 (1993).Google Scholar
Corriu, R.J.P. and Leclercq, D.: Recent developments of molecular chemistry of sol-gel processing. Angew. Chem., Int. Ed. Engl. 35, 14201436 (1996).CrossRefGoogle Scholar
Avnir, D.: Organic chemistry within ceramic matrices: Doped sol-gel materials. Acc. Chem. Res. 28, 328334 (1995).Google Scholar
Ogoshi, T. and Chujo, Y.: Organic-inorganic polymer hybrids prepared by the sol-gel method. Compos. Interfaces 11, 539566 (2005).CrossRefGoogle Scholar
Avnir, D., Coradin, T., Lev, O., and Livage, J.: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16, 10131030 (2006).Google Scholar
Dunn, B. and Zink, J.I.: Molecules in glass: Probes, ordered assemblies, and functional materials. Acc. Chem. Res. 40, 747755 (2007).Google Scholar
Matsui, K.: Entrapment of organic molecules. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, Sakka, S. ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 459484.Google Scholar
Colombo, P., Mera, G., Riedel, R., and Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 18051837 (2010).Google Scholar
Pantano, C.G., Singh, A.K., and Zhang, H.: Silicon oxycarbide glasses. J. Sol-Gel Sci. Technol. 14, 725 (1999).Google Scholar
Kamiya, K.: Oxynitride glasses and nitrides. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, Sakka, S. ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 171183.Google Scholar
Kamiya, K.: Oxycarbide glasses and carbides. In Handbook of Sol-gel Science and Technology: Processing Characterization and Applications, Sakka, S., ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 185201.Google Scholar
Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 17711789 (2006).Google Scholar
Colombo:, P. Engineering porosity in polymer-derived ceramics. J. Eur. Ceram. Soc. 28, 13891395 (2008).CrossRefGoogle Scholar
Kanamori, K. and Nakanishi, K.: Controlled pore formation in organotrialkoxysilanes-derived hybrids: From aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40, 754770 (2011).Google Scholar
Baney, R.H., Itoh, M., Sakakibara, A., and Suzuki, T.: Silsesquioxanes. Chem. Rev. 95, 14091430 (1995).Google Scholar
Brook, M.A.: Silicon in Organic, Organometallic, and Polymer Chemistry (John Wiley & Sons, New York, 2000).Google Scholar
Volksen, W., Miller, R.D., and Dubois, G.: Low dielectric constant materials. Chem. Rev. 110, 56110 (2010).Google Scholar
Kamino, B.A. and Bender, T.P.: The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem. Soc. Rev. 42, 51195130 (2013).Google Scholar
Tanaka, K., Ishiguro, F., and Chujo, Y.: POSS ionic liquid. J. Am. Chem. Soc. 132, 1764917651 (2010).Google Scholar
Tanaka, K. and Chujo, Y.: Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 22, 17331746 (2012).Google Scholar
Chinnam, P.R. and Wunder, S.L.: Polyoctahedral silsesquioxane-nanoparticle electrolytes for lithium batteries: POSS-lithium salts and POSS-PEGs. Chem. Mater. 23, 51115121 (2011).Google Scholar
Chu, Z. and Seeger, S.: Superamphiphobic surfaces. Chem. Soc. Rev. 43, 27842798 (2014).CrossRefGoogle ScholarPubMed
Castricum, H.L., Paradis, G.G., Mittelmeijer-Hazeleger, M.C., Kreiter, R., Vente, J.F., and ten Elshof, E.: Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group. Adv. Funct. Mater. 21, 23192329 (2011).Google Scholar
Xu, R., Wang, J., Kanezashi, M., Yoshioka, T., and Tsuru, T.: Development of robust organosilica membranes for reverse osmosis. Langmuir 27, 1399613999 (2011).Google Scholar
Chua, Y.T., Lin, C.X.C., Kleitz, F., Zhao, X.S., and Smart, S.: Nanoporous organosilica membrane for water desalination. Chem. Commun. 49, 45344536 (2013).Google Scholar
Kuo, S-W. and Chang, F-C.: POSS related polymer nanocomposites. Prog. Polym. Sci. 36, 16491696 (2011).CrossRefGoogle Scholar
Lebeau, B. and Innocenzi, P.: Hybrid materials for optics and photonics. Chem. Soc. Rev. 40, 886906 (2011).Google Scholar
Fujita, S. and Inagaki, S.: Self-organization of organosilica solids with molecular-scale and mesoscale periodicities. Chem. Mater. 20, 891908 (2008).Google Scholar
Lebeau, B., Gaslain, F., Fernandez-Martin, C., and Babonneau, F.: Organically modified ordered mesoporous siliceous solids. In Ordered Porous Solids: Recent Advances and Prospects, Valtchev, V., Mintova, S., and Tsapatsis, M. eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 283308.Google Scholar
Mizoshita, N., Tani, T., and Inagaki, S.: Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 40, 789800 (2011).Google Scholar
Van Der Voort, P., Esquivel, D., De Canck, E., Goethals, F., Van Driessche, I., and Romero-Salguero, F.J.: Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev. 42, 39133955 (2013).CrossRefGoogle Scholar
Nakanishi, K.: Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67112 (1997).Google Scholar
Nakanishi, K. and Tanaka, N.: Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40, 863873 (2007).CrossRefGoogle ScholarPubMed
Nakanishi, K.: Synthesis concepts and preparation of silica monoliths. In Monolithic Silicas in Separation Science, Unger, K.K., Tanaka, N., and Machtejevas, E. eds.; Wiley-VCH: Weinheim, 2011; pp. 1133.Google Scholar
Hasegawa, G., Kanamori, K., Nakanishi, K., and Hanada, T.: Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J. Mater. Chem. 19, 77167720 (2009).Google Scholar
Hasegawa, G., Kanamori, K., Nakanishi, K., and Hanada, T.: Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process. Chem. Commun. 46, 80378039 (2010).Google Scholar
Hasegawa, G., Kanamori, K., Nakanishi, K., and Hanada, T.: A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels. Chem. Mater. 22, 25412547 (2010).Google Scholar
Shea, K.J. and Loy, D.A.: Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem. Mater. 13, 33063319 (2001).Google Scholar
Loy, D.A., Baugher, B.M., Baugher, C.R., Schneider, D.A., and Rahimian, K.: Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem. Mater. 12, 36243632 (2000).CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), Chapter 3.Google Scholar
Che, S., Liu, Z., Osuna, T., Sakamoto, K., Terasaki, O., and Tatsumi, T.: Synthesis and characterization of chiral mesoporous silica. Nature 429, 281284 (2004).Google Scholar
Shimojima, A. and Kuroda, K.: Designed synthesis of nanostructured siloxane–organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 6, 5363 (2006).Google Scholar
Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. (Academic Press, San Diego, CA, 1990), Chapter 5. Google Scholar
Cordes, D.B., Lickiss, P.D., and Rataboul, F.: Recent development in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 110, 20812173 (2010).CrossRefGoogle ScholarPubMed
Ng, L.V., Thompson, P., Sanchez, J., Macosko, C.W., and McCormick, A.V.: Formation of cagelike intermediates from nonrandom cyclization during acid-catalyzed sol-gel polymerization of tetraethyl orthosilicate. Macromolecules 28, 64716476 (1995).Google Scholar
Mora-Fonz, M.J., Catlow, C.R.A., and Lewis, D.W.: Oligomerization and cyclization processes in the nucleation of microporous silicas. Angew. Chem., Int. Ed. 44, 30823086 (2005).Google Scholar
Zhang, C., Babonneau, F., Bonhomme, C., Laine, R.M., Soles, C.L., Hristov, H.A., and Yee, A.F.: Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J. Am. Chem. Soc. 120, 83808391 (1998).Google Scholar
Guo, H., Meador, M.A.B., McCorkle, L., Quade, D.J., Guo, J., Hamilton, B., Cakmak, M., and Sprowl, G.: Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3, 546552 (2011).Google Scholar
Lin, H., Ou, J., Zhang, Z., Dong, J., and Zou, H.: Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem. Commun. 49, 231233 (2013).Google Scholar
Dong, H., Lee, M., Thomas, R.D., Zhang, Z., Reidy, R.F., and Mueller, D.W.: Methyltrimethoxysilane sol-gel polymerization in acidic ethanol solutions studied by 29Si NMR spectroscopy. J. Sol-Gel Sci. Technol. 28, 514 (2003).Google Scholar
Dong, H., Zhang, Z., Lee, M-H., Mueller, D.W., and Reidy, R.F.: Sol-gel polycondensation of methyltrimethoxysilane in ethanol studied by 29Si NMR spectroscopy using a two-step acid/base procedure. J. Sol-Gel Sci. Technol. 41, 1117 (2007).Google Scholar
Kanamori, K., Kodera, Y., Hayase, G., Nakanishi, K., and Hanada, T.: Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system. J. Colloid Interface Sci. 357, 336344 (2011).Google Scholar
Riant, O., Mostefaï, N., and Courmarcel, J.: Recent advances in the asymmetric hydrosilylation of ketones, imines and electrophilic double bonds. Synthesis 18, 29432958 (2004).Google Scholar
Morris, R.H.: Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev. 38, 22822291 (2009).Google Scholar
Addis, D., Das, S., Junge, K., and Beller, M.: Selective reduction of carboxylic acid derivatives by catalytic hydrosilylation. Angew. Chem., Int. Ed. 50, 60046011 (2011).Google Scholar
Moitra, N., Kanamori, K., Shimada, T., Takeda, K., Ikuhara, Y.H., Gao, X., and Nakanishi, K.: Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Adv. Funct. Mater. 23, 27142722 (2013).Google Scholar
Xie, Z., Henderson, E.J., Dag, Ö., Wang, W., Lofgreen, J.E., Kübel, C., Scherer, T., Brodersen, P.M., Gu, Z-Z., and Ozin, G.A.: Periodic mesoporous hydridosilica – Synthesis of an “impossible” material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite. J. Am. Chem. Soc. 133, 50945102 (2011).CrossRefGoogle ScholarPubMed
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548552 (1998).Google Scholar
Sorarù, G.D., D’Andrea, G., Campostrini, R., Babonneau, F., and Mariotto, G.: Structural characterization and high-temperature behavior of silicon oxycarbide glasses prepared from sol-gel precursors containing Si-H bonds. J. Am. Ceram. Soc. 78, 379387 (1995).Google Scholar
Kleebe, H-J. and Blum, Y.D.: SiOC ceramic with high excess free carbon. J. Eur. Ceram. Soc. 28, 10371042 (2008).CrossRefGoogle Scholar
Hessel, C.M., Henderson, E.J., and Veinot, J.G.C.: Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 61396146 (2006).CrossRefGoogle Scholar
Dag, Ö., Henderson, E.J., Wang, W., Lofgreen, J.E., Petrov, S., Brodersen, P.M., and Ozin, G.A.: Spatially confined redox chemistry in periodic mesoporous hydridosilica-nanosilver grown in reducing nanopores. J. Am. Chem. Soc. 133, 1745417462 (2011).Google Scholar
Moitra, N., Kanamori, K., Ikuhara, Y.H., Gao, X., Yang, Z., Hasegawa, G., Takeda, K., Shimada, T., and Nakanishi, K.: Reduction on reactive pore surface as a versatile approach to monolith-supported metal alloy nanoparticles and its catalytic applications. J. Mater. Chem. A 2, 1253512544 (2014).Google Scholar
Moitra, N., Matsushima, A., Kamei, T., Kanamori, K., Ikuhara, Y.H., Gao, X., Takeda, K., Zhu, Y., Nakanishi, K., and Shimada, T.: A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki-Heck cross-coupling reaction. New J. Chem. 38, 11441149 (2014).Google Scholar
Moitra, N., Kamei, T., Kanamori, K., Nakanishi, K., Takeda, K., and Shimada, T.: Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane. Langmuir 29, 1224312253 (2013).Google Scholar
Shimada, T., Aoki, K., Shinoda, Y., Nakamura, T., Tokunaga, N., Inagaki, S., and Hayashi, T.: Functionalization on silica gel with allylsilanes. A new method of covalent attachment of organic functional groups on silica gel. J. Am. Chem. Soc. 125, 46884689 (2003).Google Scholar
Park, J-W. and Jun, C-H.: Transition-metal-catalyzed immobilization of organic functional groups onto solid supports through vinylsilane coupling reactions. J. Am. Chem. Soc. 132, 72687269 (2010).Google Scholar
Dong, H., Brook, M.A., and Brennan, J.D.: A new route to monolithic methylsilsesquioxanes: Gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem. Mater. 17, 28072816 (2005).CrossRefGoogle Scholar
Kanamori, K., Yonezawa, H., Nakanishi, K., Hirao, K., and Jinnai, H.: Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J. Sep. Sci. 27, 874886 (2004).Google Scholar
Nakanishi, K. and Kanamori, K.: Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J. Mater. Chem. 15, 37763786 (2005).Google Scholar
Kanamori, K., Nakanishi, K., and Hanada, T.: Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation. J. Sep. Sci. 29, 24632470 (2006).CrossRefGoogle ScholarPubMed
Kanamori, K., Aizawa, M., Nakanishi, K., and Hanada, T.: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 15891593 (2007).Google Scholar
Kanamori, K., Aizawa, M., Nakanishi, K., and Hanada, T.: Elastic organic-inorganic hybrid aerogels and xerogels. J. Sol-Gel Sci. Technol. 48, 172181 (2008).Google Scholar
Kanamori, K., Nakanishi, K., and Hanada, T.: J. Ceram. Soc. Jpn. 117, 13331338 (2009).Google Scholar
Hayase, G., Kanamori, K., and Nakanishi, K.: Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Microporous Mesoporous Mater. 158, 247252 (2012).Google Scholar
Kurahashi, M., Kanamori, K., Takeda, K., Kaji, H., and Nakanishi, K.: Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Adv. 2, 71667173 (2012).Google Scholar
Hüsing, N. and Schubert, U.: Aerogels-airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 37, 2245 (1998).Google Scholar
Pierre, A.C. and Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 42434265 (2002).Google Scholar
Koebel, M., Rigacci, A., and Achard, P.: Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 63, 315339 (2012).Google Scholar
Itoh, H., Tabata, T., Kokitsu, M., Okazaki, N., Imizu, Y., and Tada, A.: Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum chloride. J. Ceram. Soc. Jpn. 101, 10811083 (1993).Google Scholar
Gash, A.E., Tillotson, T.M., Satcher, J.H. Jr., Poco, J.F., Hrubesh, L.W., and Simpson, R.L.: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 9991007 (2001).Google Scholar
Guo, X., Li, W., Yang, H., Kanamori, K., Zhu, Y., and Nakanishi, K.: Gelation behavior and phase separation of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Sol-Gel Sci. Technol. 67, 406413 (2013).Google Scholar
Guo, X., Yu, H., Yang, H., Kanamori, K., Zhu, Y., and Nakanishi, K.: Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Porous Mater. 20, 14771483 (2013).Google Scholar
Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., and Zhang, L.: Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem., Int. Ed. 51, 20762079 (2012).Google Scholar
Worsley, M.A., Kucheyev, S.O., Kuntz, J.D., Olson, T.Y., Han, T.Y.-J., Hamza, A.V., Satcher, J.H. Jr., and Baumann, T.F.: Carbon scaffolds for stiff and highly conductive monolithic oxide-carbon nanotube composites. Chem. Mater. 23, 30543061 (2011).Google Scholar
Boday, D.J., Muriithi, B., Stover, R.J., and Loy, D.A.: Polyaniline nanofiber-silica composite aerogels. J. Non-Cryst. Solids 358, 15751580 (2012).Google Scholar
Hayase, G., Kanamori, K., Abe, K., Yano, H., Maeno, A., Kaji, H., and Nakanishi, K.: Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability and superhydrophobicity. ACS Appl. Mater. Interfaces (published online. DOI: 10.1021/am501822y).Google Scholar
Hayase, G., Kanamori, K., and Nakanishi, K.: New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. J. Mater. Chem. 21, 1707717079 (2011).Google Scholar
Hayase, G., Kanamori, K., Hasegawa, G., Maeno, A., Kaji, H., and Nakanishi, K.: A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angew. Chem., Int. Ed. 52, 19861989 (2013).Google Scholar
Hayase, G., Kanamori, K., Fukuchi, M., Kaji, H., and Nakanishi, K.: Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew. Chem., Int. Ed. 52, 19861989 (2013).Google Scholar
Wen, J. and Wilkes, G.L.: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 16671681 (1996).Google Scholar
Novak, B.M., Auerbach, D., and Verrier, C.: Low-density, mutually interpenetrating organic-inorganic composite materials via supercritical drying techniques. Chem. Mater. 4, 282286 (1994).Google Scholar
Kramer, S.J., Rubio-Alonso, F., and Mackenzie, J.D.: Organically modified silicate aerogels, “aeromosils”. Mater. Res. Soc. Symp. Proc. 435, 295300 (1996).Google Scholar
Mackenzie, J.D. and Bescher, E.P.: Mechanical properties of organic-inorganic hybrids. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, Sakka, S. ed.; Kluwer Academic Publishers: Dordrecht, 2004, Vol. II; pp. 313326.Google Scholar
Frenkel-Mullerad, H. and Avnir, D.: The chemical reactivity of sol-gel materials: Hydrobromination of ormosils. Chem. Mater. 12, 37543759 (2000).CrossRefGoogle Scholar
Itagaki, A., Nakanishi, K., and Hirao, K.: Phase separation in sol-gel system containing mixture of 3- and 4-functional alkoxysilanes. J. Sol-Gel Sci. Technol. 26, 153156 (2003).Google Scholar
Shimojima, A. and Kuroda, K.: Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 6, 5363 (2006).CrossRefGoogle ScholarPubMed
Kuroda, K., Shimojima, A., Kawahara, K., Wakabayashi, R., Tamura, Y., Asakura, Y., and Kitahara, M.: Utilization of alkoxysilyl groups for the creation of structurally controlled siloxane-based nanomaterials. Chem. Mater. 26, 211220 (2014).Google Scholar
Hay, J.N., Porter, D., and Raval, H.M.: A versatile route to organically-modified silicas and porous silicas via the non-hydrolytic sol-gel process. J. Mater. Chem. 10, 18111818 (2000).Google Scholar
Mutin, P.H. and Vioux, A.: Nonhydrolytic processing of oxide-based materials: Simple routes to control homogeneity, morphology, and nanostructure. Chem. Mater. 21, 582596 (2009).Google Scholar
Liu, Y., Wang, M., Li, Z., Liu, H., He, P., and Li, J.: Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent. Langmuir 21, 16181622 (2005).Google Scholar
Arkhireeva, A., Hay, J.N., and Manzano, M.: Preparation of silsesquioxane particles via a nonhydrolytic sol-gel route. Chem. Mater. 17, 875880 (2005).Google Scholar
González-Campo, A., Juárez-Pérez, E.J., Viñas, C., Boury, B., Sillanpää, R., Kivekäs, R., and Núñez, R.: Carboranyl substituted siloxanes and octasilsesquioxanes: Synthesis, characterization, and reactivity. Macromolecules 41, 84588466 (2008).Google Scholar
Boday, D.J., Tolbert, S., Keller, M.W., Li, Z., Wertz, J.T., Muriithi, B., and Loy, D.A.: Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions. J. Nanopart. Res. 16, 2313 (2014).Google Scholar