Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T02:39:59.007Z Has data issue: false hasContentIssue false

Morphology and electronic properties of carbon nanotubes grown with Fe catalyst

Published online by Cambridge University Press:  03 March 2011

E. Kowalska*
Affiliation:
Industrial Institute of Electronics, ul. Dluga 44/50, 00-241 Warsaw, Poland
J. Radomska
Affiliation:
Industrial Institute of Electronics, ul. Dluga 44/50, 00-241 Warsaw, Poland
P. Byszewski
Affiliation:
Institute of Physics, PAS, al. Lotników 321/46, 02-668 Warsaw, Poland
P. Kowalczyk
Affiliation:
Department of Solid State Physics, University of Łódź, ul. Pomorska 149/153, 90-236 Łódź, Poland
K. Antonova
Affiliation:
Institute of Solid State Physics, BAS, blvd. Tzarigradsko chaussee 72, 1784 Sofia, Bulgaria
R. Diduszko
Affiliation:
Industrial Institute of Electronics, ul. Długa 44/50, 00-241 Warsaw, Poland
H. Lange
Affiliation:
Department of Chemistry, Warsaw University, ul. Pasteuro 1, 02-093 Warsaw, Poland
P. Dłuzewski
Affiliation:
Institute of Physics, PAS, al. Lotników 32146, 02-668 Warsaw, Poland
*
a)Address all correspondence to this author. e-mail: kowal@warman.com.pl
Get access

Abstract

We describe the synthesis and characterization of aligned carbon nanotubes deposited on quartz substrates by pyrolysis of a xylene–ferrocene mixture at 700 °C at atmospheric pressure. For microscopic characterization of the pyrolyzed products, scanning and transmission electron microscopies and scanning tunneling microcopy were used, and properties of bulk samples were characterized by Raman spectroscopy and x-ray powder diffraction methods. The nanotubes have topological defects and many contain metal particles. Scanning tunneling spectroscopy proved that the nanotubes had a metallic electrical conductivity with resonant states near the Fermi energy. The states are ascribed to the dangling bonds originating from the defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.White, C.T. and Todorov, T.N., Nature 393, 240 (1998).CrossRefGoogle Scholar
3.Ajiki, H. and Ando, T., Solid State Commun. 102, 135 (1997).CrossRefGoogle Scholar
4.Dai, H., Hafner, H., Rinzler, A.G., Colbert, D.T., and Smalley, R.E., Nature 384, 147 (1996).CrossRefGoogle Scholar
5.Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., and Dekker, C., Nature 386, 474 (1997).CrossRefGoogle Scholar
6.Kong, J., Franklin, N.R., Zhou, Ch., Chapline, M.G., Peng, S., Cho, K., and Dai, H., Science 287, 622 (2000).CrossRefGoogle Scholar
7.Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873 (1999).CrossRefGoogle Scholar
8.Huczko, A., Appl. Phys. A 70, 365 (2000).CrossRefGoogle Scholar
9.Kim, P. and Lieber, C., Science 286, 2148 (1999).CrossRefGoogle Scholar
10.Ye, Y., Ahn, C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E., Appl. Phys. Lett. 74, 2307 (1999).CrossRefGoogle Scholar
11.Dai, H.J., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 260, 471 (1996).CrossRefGoogle Scholar
12. Ch.Cheung, L., Kurtz, A., Park, H., and Ch.Lieber, M., J. Phys. Chem. B 106, 2429 (2002).CrossRefGoogle Scholar
13.Che, C.G., Lakshmi, B.B., Martin, C.R., Fisher, E.R., and Ruoff, R.S., Chem. Mater. 10, 260 (1998).CrossRefGoogle Scholar
14.Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S., Appl. Phys. Lett. 72, 3282 (1998).CrossRefGoogle Scholar
15.Xu, D., Guo, G., Gui, L., Tang, Y., Shi, Z., Jin, Z., Gu, Z., Liu, W., Li, X., and Zhang, G., Appl. Phys. Lett. 75, 4, 481 (1999).CrossRefGoogle Scholar
16.Ivanov, V., Fonseca, A., Nagy, J.B., Lucas, A., Lambin, P., Bernaerts, D., and Zhang, X.B., Carbon 33, 1727 (1995).CrossRefGoogle Scholar
17.Li, W., Xie, S., Liu, W., Zhao, R., Zhang, Y., Zhou, W., Wang, G., and Qian, L., J. Mater. Sci. 34, 2745 (1999).CrossRefGoogle Scholar
18.Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C., and Chen, J., Chem. Phys. Lett. 303, 467 (1999).CrossRefGoogle Scholar
19.Cassell, A.C., Raymakers, J.A., Kong, J., and Dai, H., J. Phys. Chem. B 103, 6484 (1999).CrossRefGoogle Scholar
20.Nikolaev, P., Brownikowsky, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett. 313, 91 (1999).CrossRefGoogle Scholar
21. Ch. Singh, Shaffer, M., Kinloch, I., and Windle, A., Physica B 323, 339 (2002).Google Scholar
22.Shaffer, M.S.P., Fan, X., and Windle, A.H., Carbon 36–11, 1603 (1998).CrossRefGoogle Scholar
23.Mawhinney, D.B., Naumenko, V., Kuznetsova, A., and Yates, J.T., J. Am. Chem. Soc. 122, 2383 (2002).CrossRefGoogle Scholar
24. V. Gümez-Serrano, Piriz, F.-Almeida, Duráa-Valle, C.J., and Pastor-Villegas, J., Carbon 37, 1517 (1999).Google Scholar
25.Valiente, A.M., López, P.N., Ramos, I.R., Ruiz, AG., Li, C., and Xin, Q., Carbon 38, 2003 (2000).CrossRefGoogle Scholar
26.Nerushev, O.A., Morjan, R.E., Ostrovskii, D.I., Sveningsson, M., Jönsson, M., Rohmund, F., and Campbell, E.E.B., Physica B 323, 51 (2002).CrossRefGoogle Scholar
27.Vidano, R.P., Fischbach, D.B., Willis, L.J., and Loehr, T.M., Solid State Commun. 39, 341 (1981).CrossRefGoogle Scholar
28.Tsaia, S.H., Chiangb, F.K., Tsaia, T.G., Shieub, F.S., and Shiha, H.C., Thin Solid Films 366, 11 (2000).CrossRefGoogle Scholar
29.Zhao, X., Ando, Y., Qin, L-Ch., Kataura, H., Maniwa, Y., and Saito, R., Appl. Phys. Lett. 81, 2550 (2002).CrossRefGoogle Scholar
30.Bacsa, R.R., Laurent, Ch., Peigney, A., Bacsa, W.S., Vaugien, Th., and Rousset, A., Chem. Phys. Lett. 323, 566 (2000).CrossRefGoogle Scholar
31.Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S., and Landbergen, H., Chem. Phys. Lett. 221, 53 (1994).CrossRefGoogle Scholar
32.Huong, P.V., Cavagant, R., Ajayan, P.M., and Stephan, O., Phys. Rev. B 51, 10048 (1995).CrossRefGoogle Scholar
33.Zhao, X., Ando, Y., Qin, L-Ch., Kataura, H., Maniwa, Y., and Saito, R., Chem. Phys. Lett. 361, 169 (2002).CrossRefGoogle Scholar
34.Zhao, X., Ando, Y., Qin, L-Ch., Kataura, H., Maniwa, Y., and Saito, R., Physica B 323, 265 (2002).CrossRefGoogle Scholar
35.Klusek, Z., Kowalczyk, P., and Byszewski, P., Vacuum 63, 145 (2001).CrossRefGoogle Scholar
36.Ichimura, K., Osawa, M., Nomura, K., Kataura, H., Maniwa, Y., Suzuki, S., and Achiba, Y., Physica B 323, 230 (2002).CrossRefGoogle Scholar
37.Charlier, J.C., Ebbesen, T.W., and Lambin, P., Phys. Rev. B 53, 11108 (1996).CrossRefGoogle Scholar
38.Han, J., Anantram, M.P., Jaffe, R.L., Kong, J., and Dai, H., Phys. Rev. B 57, 14983 (1998).CrossRefGoogle Scholar
39.Terrones, M., Banhart, F., Grobert, N., Charlier, J.C., Terrones, H., and Ajayan, P.M., Phys. Rev. Lett. 89, 5505 (2002).CrossRefGoogle Scholar
40.Kobayashi, K., Phys. Rev. B 48, 1757 (1993).CrossRefGoogle Scholar
41.Klusek, Z., Kobierski, P., and Olejniczak, W., Appl. Phys. A 66, 129 (1998).CrossRefGoogle Scholar
42.Tersoff, J. and Hamann, D.R., Phys. Rev. Lett. 50, 1998 (1983).CrossRefGoogle Scholar
43.Klusek, Z., Waqar, Z., Denisov, E.A., Kompaniets, T.N., Makarenko, I.V., Titkov, A.N., and Bhatti, A.S., Appl. Surf. Sci. 161, 508 (2000).CrossRefGoogle Scholar