Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T03:46:26.188Z Has data issue: false hasContentIssue false

Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints

Published online by Cambridge University Press:  31 January 2011

R. R. Chromik
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015
R. P. Vinci
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015
S. L. Allen
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015
M. R. Notis
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015
Get access

Abstract

Nanoindentation testing has been used to measure the hardness and elastic modulus of Ag3Sn, Cu6Sn5, and Cu3Sn intermetallics, as well as Sn–Ag–Cu solder and pure Sn and Cu. The intermetallics were fabricated by solid-state annealing of diffusion couples prepared from a substrate (Cu or Ag) and a solder material (Sn or Sn–Ag–Cu solder), providing geometries and length scales as close as possible to a real solder joint. Nanoindentation results for the intermetallics, representing penetration depths of 20–220 nm and loads from 0.7 to 9.5 mN, reveal elastic/plastic deformation without evidence of fracture. Measured hardness values of Cu6Sn5 (6.5 ± 0.3 GPa) and Cu3Sn (6.2 ± 0.4 GPa) indicate a potential for brittle behavior, while Ag3Sn (2.9 ± 0.2 GPa) appears much softer and ductile. Using a bulk Cu6Sn5 sample, Vickers hardness testing revealed an indentation size effect for this compound, with a hardness of 4.3 GPa measured at a load of 9.8 N. An energy balance model is used to explain the dependence of hardness with load or depth, where the observation of an increasing amount of fracture with applied load is identified as the primary mechanism. This result explains discrepancies between nanoindentation and Vickers results previously reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Morris, J.W. Jr, Goldstein, J.L. Freer, and Mei, Z., in The Mechanics of Solder Alloy Interconnects, edited by Frear, D., Morgan, H., Burchett, S., and Lau, J. (ITP, New York, 1994), pp. 741.Google Scholar
2.Marshall, J.L., Foster, L. Ann, and Sees, J.A., in The Mechanics of Solder Alloy Interconnects, edited by Frear, D., Morgan, H., Burchett, S., and Lau, J. (ITP, New York, 1994), pp. 4286.Google Scholar
3.Manko, H.H., Solders and Soldering (McGraw-Hill, New York, 2001), pp. 61167.Google Scholar
4.Pratt, R.E., Stromswold, E.I., and Quesnel, D.J., IEEE Trans. Comp. Pack. Manuf. Technol. A 19, 134 (1996).CrossRefGoogle Scholar
5.Suganuma, K., Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
6.Suganuma, K., Kim, K.S., and Huh, S.H., in Proceedings 2001 International Symposium on Microelectronics, SPIE Vol. 4587 (IMAPS, Washington, DC, 2001), pp. 529534.Google Scholar
7.Moon, Z.W., Boettinger, W.J., Kattner, U.R., Biancaniello, F.S., and Handwerker, C.A., J. Electron. Mater. 29, 1122 (2000).CrossRefGoogle Scholar
8.Lewis, D., Allen, S., Notis, M., and Scotch, A., J. Electron. Mater. 31, 161 (2002).CrossRefGoogle Scholar
9.Chromik, R.R. and Cotts, E.J., in Electronic Packaging Materials Science IX, edited by Groothuis, S.K., Ho, P.S., Ishida, K., and Wu, T. (Mater. Res. Soc. Symp. Proc. 445, Pittsburgh, PA, 1997), pp. 3136.Google Scholar
10.Chromik, R.R., Vinci, R.P., Allen, S.L., and Notis, M.R., in Proceedings of SMTA International (SMTA, Edina, MN, 2002), p. 786.Google Scholar
11.Fields, R.J., Low, S.R. III, and Lucey, G.K. Jr, in The Metal Science of Joining, edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E. (The Minerals, Metals, and Mining Society, Warrendale, PA, 1991), pp. 165174.Google Scholar
12.Ostrovskaya, L.M., Rodin, V.N., and Kuznetsov, A.I., Soviet J. Non-Ferrous Metall. (Tsvetnye Metally) 26, 90 (1985).Google Scholar
13.Subrahmanyan, B., Trans. Jpn. Inst. Metals 130, 93 (1972).CrossRefGoogle Scholar
14.Cabaret, R., Guillet, L., and LeRoux, R., J. Inst. Metals 75, 391 (1949).Google Scholar
15.Tsui, T.Y., Vlassak, J., and Nix, W.D., J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
16.Tsui, T.S., Vlassak, J., and Nix, W.D., J. Mater. Res. 14, 2204 (1999).CrossRefGoogle Scholar
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
18.Fischer-Cripps, A.C., Vacuum 58, 569 (2000).CrossRefGoogle Scholar
19.Fischer-Cripps, A.C., Nanoindentation (Springer, New York, 2002), pp. 126141.CrossRefGoogle Scholar
20.Onishi, M. and Fujibuchi, H., Trans. JIM 16, 539 (1975).CrossRefGoogle Scholar
21.Kay, P.J. and Mackay, C.A., Trans. Inst. Met. Finish. 54, 68 (1976).CrossRefGoogle Scholar
22.Marshall, D.B. and Lawn, B.R., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 2646.Google Scholar
23.Sargent, P.M., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 160174.Google Scholar
24.Fröhlich, F., Grau, P., and Grellmann, W., Phys. Status. Solidi A 42, 79 (1977).CrossRefGoogle Scholar
25.Gong, J. and Li, Y., J. Mater. Sci. 35, 209 (2000).CrossRefGoogle Scholar
26.Gong, J., Wu, J., and Guan, Z., Mater. Lett. 38, 197 (1999).CrossRefGoogle Scholar
27.Sangwal, K., Surowska, B., and Blaziak, P., Mater. Chem. Phys. 77, 511 (2002).CrossRefGoogle Scholar
28.Li, H. and Bradt, R.C., J. Mater. Sci. 28, 917 (1993).CrossRefGoogle Scholar
29.Quinn, J.B. and Quinn, G.D., J. Mater. Sci. 32, 4331 (1997).CrossRefGoogle Scholar
30.Elmustafa, A.A. and Stone, D.S., Acta Mater. 50, 3641 (2002).CrossRefGoogle Scholar
31.Tabor, D., The Hardness of Metals (Oxford University Press, Oxford, U.K., 1951), pp. 6783.Google Scholar
32.Kang, J.S., Gagliano, R.A., Ghosh, G., and Fine, M.E., J. Electon. Mater. 31, 1238 (2002).CrossRefGoogle Scholar
33.Henderson, D.W., Gosselin, T., Sarkhel, A., Kang, S.K., Choi, W-K., and Shih, D-Y., J. Mater. Res. 17, 2775 (2002).CrossRefGoogle Scholar
34.Lee, T.Y., Choi, W.J., Tu, K.N., Jang, J.W., Kuo, S.M., Lin, J.K., Frear, D.R., Zeng, K., and Kivilahti, J.K., J. Mater. Res. 17, 1 (2002).Google Scholar
35.Kim, K.S., Huh, S.H., and Suganuma, K., Mater. Sci. Eng. A 333, 106 (2002).CrossRefGoogle Scholar
36.Lehman, L.P., Kinyanjui, R.K., Zavalij, L., Zribi, A., and Cotts, E.J., in Proceedings of the 53rd Electronic Components and Technology Conference (IEEE, Piscataway, NJ, 2003), p. 1215.Google Scholar
37.Ghosh, G. (Paper presented at TMS Annual Meeting, March 2003).Google Scholar