Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T23:25:03.476Z Has data issue: false hasContentIssue false

Nanoindentation of thin films: Simulations and experiments

Published online by Cambridge University Press:  31 January 2011

Arun K. Nair
Affiliation:
Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia 24061
M.J. Cordill
Affiliation:
Department of Chemical Engineering/Materials Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Diana Farkas*
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061
W.W. Gerberich
Affiliation:
Department of Chemical Engineering/Materials Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
*
c) Address all correspondence to this author. e-mail: diana@vt.edu
Get access

Abstract

Atomistic simulations of nanoindentation of a 20-nm-thick Ni thin film oriented in the [111] direction were carried out to study the effects of indenter velocity and radii, interatomic potentials, and the boundary conditions used to represent the substrate. The simulation results were compared directly with experimental results of Ni thin film of the same thickness and orientation. It was found that the high indenter velocity does not affect the hardness value significantly. Different radii used for indentation also have negligible effects on the hardness value. Two different interatomic potentials were tested, giving significantly different hardness values but both within 20% of the experimental result. Different boundary conditions used to represent the substrate have a significant effect for relatively deep indentation simulations.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2002).CrossRefGoogle Scholar
2.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., and Wyrobek, J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44(9), 3585 (1996).CrossRefGoogle Scholar
3.Christopher, D., Smith, R., and Richter, A.: Atomistic modelling of nanoindentation in iron and silver. Nanotechnology 12(3), 372 (2001).CrossRefGoogle Scholar
4.Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418(6895), 307 (2002).CrossRefGoogle ScholarPubMed
5.Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M., and Nix, W.D.: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51(5), 901 (2003).CrossRefGoogle Scholar
6.Lee, Y.M., Park, J.Y., Kim, S.Y., Jun, S., and Im, S.: Atomistic simulations of incipient plasticity under A1(111) nanoindentation. Mech. Mater. 37(10), 1035 (2005).CrossRefGoogle Scholar
7.Ma, X.L. and Yang, W.: Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation. Nanotechnology 14(11), 1208 (2003).CrossRefGoogle Scholar
8.Shiari, B., Miller, R.E., and Curtin, W.A.: Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. J. Eng. Mater. Technol. 127(4), 358 (2005).CrossRefGoogle Scholar
9.Iglesias, R.A. and Leiva, E.P.M.: Two-grain nanoindentation using the quasicontinuum method: Two-dimensional model approach. Acta Mater. 54(10), 2655 (2006).CrossRefGoogle Scholar
10.Kim, K.J., Yoon, J.H., Cho, M.H., and Jang, H.: Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Sigma = 5 (210) grain boundary. Mater. Lett. 60 (28), 3367 (2006).CrossRefGoogle Scholar
11.Szlufarska, I.: Atomistic simulations of nanoindentation. Mater. Today 9(5), 42 (2006).CrossRefGoogle Scholar
12.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9(5), 32 (2006).CrossRefGoogle Scholar
13.Parakala, P., Mirshams, R.A., Nasrazadani, S., and Lian, K.: Effects of thickness and indenter geometry in nanoindentation of nickel thin films, in Thin Films-Stresses and Mechanical Properties X, edited by Corcoran, S.G., Joo, Y-C., Moody, N.R., and Suo, Z. (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004), pp. 355360.Google Scholar
14.Nix, W.D. and Gao, H.J.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).CrossRefGoogle Scholar
15.Huang, Y., Zhang, F., Hwang, K.C., Nix, W.D., Pharr, G.M., and Feng, G.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54(8), 1668 (2006).CrossRefGoogle Scholar
16.Zhang, F., Saha, R., Huang, Y., Nix, W.D., Hwang, K.C., Qu, S., and Li, M.: Indentation of a hard film on a soft substrate: Strain gradient hardening effects. Int. J. Plast. 23(1), 25 (2007).CrossRefGoogle Scholar
17.Cordill, M.J., Mook, W.M., Nair, A.K., Farkas, D., and Gerberich, W.W.: Novel routes to nanocrystalline mechanical characterization. JOM 59(9), 59 (2007).CrossRefGoogle Scholar
18.Chen, S.H., Liu, L., and Wang, T.C.: Size dependent nanoindentation of a soft film on a hard substrate. Acta Mater. 52(5), 1089 (2004).CrossRefGoogle Scholar
19.Li, L.H., Yin, L., and Chu, P.K.: Finite element analysis of residual stress and interlayer in hard coating/interlayer/soft substrate system during nanoindentation. J. Mater. Res. 23(5), 1358 (2008).CrossRefGoogle Scholar
20.Nair, A.K., Farkas, D., and Kriz, R.D.: Molecular dynamics study of size effects and deformation of thin films due to nanoindentation. Comput. Model. Eng. Sci. 24(2–3), 239 (2008).Google Scholar
21.Khatibi, A. and Mortazavi, B.: A study on the nanoindentation behaviour of single crystal silicon using hybrid MD-FE method. Frontiers Mater. Sci. Technol. 32, 259 (2008).Google Scholar
22.Meza, J.M., Abbes, F., and Troyon, M.: Penetration depth and tip radius dependence on the correction factor in nanoindentation measurements. J. Mater. Res. 23(3), 725 (2008).CrossRefGoogle Scholar
23.Basu, S., Moseson, A., and Barsoum, M.W.: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).CrossRefGoogle Scholar
24.Moseson, A.J., Basu, S., and Barsoum, M.W.: Determination of the effective zero point of contact for spherical nanoindentation. J. Mater. Res. 23, 204 (2008).CrossRefGoogle Scholar
25.Basu, S. and Barsoum, M.W.: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress-strain curves. J. Mater. Res. 22, 2470 (2007).CrossRefGoogle Scholar
26.Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1 (1995). Available at: http://lammps.sandia.gov.CrossRefGoogle Scholar
27.Mishin, Y., Farkas, D., Mehl, M.J., and Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59(5), 3393 (1999).CrossRefGoogle Scholar
28.Voter, A.F. and Chen, S.P.: Accurate interatomic potentials for Ni and Ni3Al, in Characterization of Defects in Materials, edited by Siegel, R.W., Weertman, J.R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.Google Scholar
29.Lund, M.S. and Leighton, C.: Design and performance of a molecular beam epitaxy system for metallic heterostructure deposition illustrated by a study of the controlled epitaxy of Cu(111)/ Al2O3(0001). J. Vac. Sci. Technol., A 22(5), 2027 (2004).CrossRefGoogle Scholar
30.Daw, M.S. and Baskes, M.I.: Embedded—atom method-Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443 (1984).CrossRefGoogle Scholar
31.Finnis, M.: Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, UK, 2003), pp. 129186.CrossRefGoogle Scholar
32.Kelchner, C.L., Plimpton, S.J., and Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085 (1998).CrossRefGoogle Scholar
33.Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002).CrossRefGoogle Scholar
34.Hay, J.L., O'Hern, M.E., and Oliver, W.C.: The importance of contact radius for substrate-independent property measurement of thin films, in Fundamentals of Nanoindentation and Nanotri-bology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 27.Google Scholar
35.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
36.Lu, C.J. and Bogy, D.B.: The effect of tip radius on nano-indentation hardness tests. Int. J. Solids Struct. 32(12), 1759 (1995).CrossRefGoogle Scholar
37.Nair, A.K., Parker, E., Gaudreau, P., Farkas, D., and Kriz, R.D.: Size effects in indentation response of thin films at the nano-scale: A molecular dynamics study. Int. J. Plast. 24(11), 2016 (2008).CrossRefGoogle Scholar
38.Zimmerman, J.A., Gao, J.H., and Abraham, F.F.: Generalized stacking fault energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng. 8(2), 103 (2000).CrossRefGoogle Scholar