Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T09:29:54.442Z Has data issue: false hasContentIssue false

Nanoscale phase transitions under extreme conditions within an ion track

Published online by Cambridge University Press:  31 January 2011

Rodney C. Ewing*
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109
William J. Weber*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
Marcel Toulemonde
Affiliation:
Centre Interdisciplinaire de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Ecole national superieure d'Ingenieurs de Caen (CEA-CNRS-ENSICAEN) and University of Caen, 14070 Caen, France
*
a)Address all correspondence to this author. e-mail: rodewing@umich.edu
b)Address all correspondence to this author. e-mail: wjweber@utk.edu Present address: University of Tennessee, Knoxville, TN 37996. This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

The dynamics of track development due to the passage of relativistic heavy ions through solids is a long-standing issue relevant to nuclear materials, age dating of minerals, space exploration, and nanoscale fabrication of novel devices. We have integrated experimental and simulation approaches to investigate nanoscale phase transitions under the extreme conditions created within single tracks of relativistic ions in Gd2O3(TiO2)x and Gd2Zr2–xTixO7. Track size and internal structure depend on energy density deposition, irradiation temperature, and material composition. Based on the inelastic thermal spike model, molecular dynamics simulations follow the time evolution of individual tracks and reveal the phase transition pathways to the concentric track structures observed experimentally. Individual ion tracks have nanoscale core-shell structures that provide a unique record of the phase transition pathways under extreme conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matzke, Hj., Kinoshita, M.Polygonization and high burnup structure in nuclear fuels. J. Nucl. Mater. 247, 108 (1997)CrossRefGoogle Scholar
2.Fleischer, R.L., Price, P.B.Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. Cosmochim. Acta 28, 1705 (1964)CrossRefGoogle Scholar
3.Fleischer, R.L., Price, P.B., Walker, R.M.Nuclear Tracks in Solids (University of California Press, Berkeley, CA 1975)CrossRefGoogle Scholar
4.Boscherini, M., Adriani, O., Bongi, M., Bonechi, L., Castellini, G., D'Alessandro, R., Gabbanini, A., Grandi, M., Menn, W., Papini, P., Ricciarini, S.B., Simon, M., Spillantini, P., Straulino, S., Taccetti, F., Tesi, M., Vannuccini, E.Radiation damage of electronic components in space environment. Nucl. Instrum. Methods Phys. Res., Sect. A 514, 112 (2003)CrossRefGoogle Scholar
5.Fleischer, R.L.Nuclear tracks and nanostructuresEngineering Thin Films and Nanostructures with Ion Beams edited by E. Knystautas (CRC, Marcel Dekker, New York 2005)491Google Scholar
6.Lian, J., Wang, L.M., Wang, S.X., Chen, J., Boatner, L.A., Ewing, R.C.Nanoscale manipulation of pyrochlore: New nanocomposite ionic conductors. Phys. Rev. Lett. 87, 14901 (2001)CrossRefGoogle ScholarPubMed
7.Schiwietz, G., Czerski, K., Roth, M., Staufenbiel, F., Grande, P.L.Femtosecond dynamics—Snapshots of the early ion-track evolution. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 4 (2004)CrossRefGoogle Scholar
8.Szenes, G.General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys. Rev. B 51, 8026 (1994)CrossRefGoogle Scholar
9.Avasthi, D.K., Ghosh, S., Srivastava, S.K., Assmann, W.Existence of transient temperature spike induced by SHI: Evidence by ion beam analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 219–220, 206 (2004)CrossRefGoogle Scholar
10.Gedik, N., Yang, D-S., Logvenov, G., Bozovic, I., Zewail, A.H.Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425 (2007)CrossRefGoogle ScholarPubMed
11.Holian, B.L., Lomdahl, P.S.Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280, 2085 (1998)CrossRefGoogle ScholarPubMed
12.San-Miguel, A.Nanomaterials under high pressure. Chem. Soc. Rev. 35, 876 (2006)CrossRefGoogle ScholarPubMed
13.Lang, M., Zhang, F., Zhang, J., Wang, J., Schuster, B., Trautmann, C., Neumann, R., Becker, U., Ewing, R.C.Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat. Mater. 8, 793 (2009)CrossRefGoogle ScholarPubMed
14.Lutique, S., Staicu, D., Konings, R.J.M., Rondinella, V.V., Somers, J., Wiss, T.Zirconate pyrochlore as a transmutation target: Thermal behaviour and radiation resistance against fission fragment impact. J. Nucl. Mater. 319, 59 (2003)CrossRefGoogle Scholar
15.Kim, H.S., Joung, C.Y., Lee, B.H., Kim, S.H., Sohn, D.S.Characteristics of GdxMyOz (M = Ti, Zr or Al) as a burnable absorber. J. Nucl. Mater. 372, 340 (2008)CrossRefGoogle Scholar
16.Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., Govidan Kutty, K.V.Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999)CrossRefGoogle Scholar
17.Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., Hartmann, T.Radiation tolerance of complex oxides. Science 289, 748 (2000)CrossRefGoogle ScholarPubMed
18.Weber, W.J., Ewing, R.C.Plutonium immobilization and radiation effects. Science 289, 2051 (2000)CrossRefGoogle ScholarPubMed
19.Ewing, R.C., Weber, W.J., Lian, J.Nuclear waste disposal—Pyrochlore (A2B2O7): A nuclear waste form for the immobilization of plutonium and the “minor” actinides. J. Appl. Phys. 95, 5949 (2004)CrossRefGoogle Scholar
20.Tuller, H.L.Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds. Solid State Ionics 52, 135 (1992)CrossRefGoogle Scholar
21.Jones, R.H., Ashcroft, A.T., Waller, D., Cheetham, A.K., Thomas, J.M.Catalytic conversion of methane to synthesis gas over europium iridate, Eu2Ir2O7: An in situ study by x-ray diffraction and mass spectroscopy. Catal. Lett. 8, 169 (1991)CrossRefGoogle Scholar
22.Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T., Sakakibara, T.Time-reversal symmetry breaking and spontaneous Hall effect without magnetic order. Nature 463, 210 (2010)CrossRefGoogle Scholar
23.Waring, J.L., Schneider, S.J.Phase equilibrium relationships in the system Gd2O3–TiO2. J. Res. Nat. Bur. Stand. Sec. A 69, 255 (1965)CrossRefGoogle Scholar
24.Shepelev, Yu.F., Petrova, M.A.Crystal structures of Ln2TiO5 (Ln = Gd, Dy) polymorphs. Inorg. Mater. 44, 1354 (2008)CrossRefGoogle Scholar
25.Subramanian, M.A., Aravamudan, G., Subba Rao, G.V.Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55 (1983)CrossRefGoogle Scholar
26.Chakoumakos, B.C.Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 53, 120 (1984)CrossRefGoogle Scholar
27.Wuensch, B.J., Eberman, K.W., Heremans, C., Ku, E.M., Onnerud, P., Yeo, E.M.E., Haile, S.M., Stalick, J.K., Jorgensen, J.D.Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ionics 129, 111 (2000)CrossRefGoogle Scholar
28.Zhang, F.X., Wang, J.W., Lian, J., Lang, M.K., Becker, U., Ewing, R.C.Phase stability and pressure dependence of defect formation in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. Phys. Rev. Lett. 100, 045503 (2008)CrossRefGoogle ScholarPubMed
29.Lang, M., Lian, J., Zhang, J., Zhang, F., Weber, W.J., Trautmann, C., Ewing, R.C.Single-ion tracks in Gd2Zr2–xTixO7 pyrochlores irradiated with swift heavy ions. Phys. Rev. B 79, 224105 (2009)CrossRefGoogle Scholar
30.Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., Weber, W.J.Heavy-ion irradiation effects in Gd2(ZrxTi1–x)2O7 pyrochlores. J. Nucl. Mater. 289, 188 (2001)CrossRefGoogle Scholar
31.Lian, J., Wang, L., Chen, J., Sun, K., Ewing, R.C., Farmer, J.M., Boatner, L.A.The order-disorder transition in ion-irradiated pyrochlore. Acta Mater. 51, 1493 (2003)CrossRefGoogle Scholar
33.Todorov, I.T., Smith, W., Trachenko, K., Dove, M.T.DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911 (2006)CrossRefGoogle Scholar
34.Minervini, L., Grimes, R.W., Sickafus, K.E.Disorder in pyrochlore oxides. J. Am. Ceram. Soc. 83, 1873 (2000)CrossRefGoogle Scholar
35.Ziegler, J.F., Biersack, J.P., Littmark, U.The Stopping and Range of Ions in Matter (Pergamon Press, New York 1985)CrossRefGoogle Scholar
36.Humphrey, W., Dalke, A., Schulten, K.VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996)CrossRefGoogle ScholarPubMed
37.Katz, R., Loh, K.S., Baling, L., Huang, G-R.An analytical representation of the radial distribution of dose from energetic heavy ions in water, Si, LiF, NaI, and SiO2. Radiat. Eff. Defects Solids 114, 15 (1990)CrossRefGoogle Scholar
38.Toulemonde, M., Dufour, Ch., Meftah, A., Paumier, E.Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 903 (2000)CrossRefGoogle Scholar
39.Meftah, A., Costantini, J.M., Khalfaoui, N., Boudjadar, S., Stoquert, J.P., Studer, F., Toulemonde, M.Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials. Nucl. Instrum. Methods Phys. Res., Sect. B 237, 563 (2005)CrossRefGoogle Scholar
40.Lang, M., Zhang, F.X., Ewing, R.C., Lian, J., Trautmann, C., Wang, Z.Structural modifications of Gd2Zr2–xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 24, 1322 (2009)CrossRefGoogle Scholar
41.Toulemonde, M., Dufour, C., Paumier, E.Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46, 14362 (1992)CrossRefGoogle ScholarPubMed
42.Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Suder, F., Trautmann, C.Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 52, 263 (2006)Google Scholar
43.Kluth, P., Schnohr, C.S., Pakarinen, O.H., Djurabekova, F., Sprouster, D.J., Giulian, R., Ridgway, M.C., Byrne, A.P., Trautmann, C., Cookson, D.J., Nordlund, K., Toulemonde, M.Fine structure in swift heavy ion tracks in amorphous SiO2. Phys. Rev. Lett. 101, 175503 (2008)CrossRefGoogle ScholarPubMed
44.Pakarinen, O.H., Djurabekova, F., Nordlund, K., Kluth, P., Ridgway, M.C.Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1456 (2009)CrossRefGoogle Scholar
45.Devanathan, R., Weber, W.J.Dynamic annealing of defects in irradiated zirconia-based ceramics. J. Mater. Res. 23, 593 (2008)CrossRefGoogle Scholar