Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T16:20:36.809Z Has data issue: false hasContentIssue false

Narrowing sputtered nanoparticle size distributions

Published online by Cambridge University Press:  31 January 2011

F.H. Kaatz
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5000
G.M. Chow
Affiliation:
Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375-5000
A.S. Edelstein
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

By adjusting the sputtering rate and gas pressure, it is possible to form nanoparticles of different sizes, phases, and materials. We have investigated the spatial distribution of sputtered particle formation using a vertical, linear arrangement of substrates. Collecting the particles soon after they are formed, before they have time to grow and agglomerate, allows one to obtain a narrow size distribution. In the case of molybdenum, a narrow distribution of cubic particles is formed at relatively large distances (8 cm) from the source. These cubic particles collide and self-assemble in the vapor into arrays of larger cubic particles. The particle size histograms are fitted to lognormal distribution functions. How supersaturation occurs is discussed qualitatively as a function of the distance from the substrate, sputtering rate, and the mean free path in the vapor. This method of nanocrystalline particle formation has potential use in magnetic and opto-electronic (quantum dot) applications, where a narrow size distribution is required.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1See, for example, Nanostructured Materials 13 (1992).Google Scholar
2Yahikozawa, K.Nishimura, K.Kimazawa, M.Tateishi, N.Takasu, Y.Yasuda, K. and Matsuda, Y.Electrochim. Acta 37, 453 (1992).CrossRefGoogle Scholar
3Tang, Z.X.Sorenson, CM.Klabunde, K.J. and Had-jipanayis, G. C., Phys. Rev. Lett. 67, 3602 (1991); D.C. Douglass J. P.Bucher and L.A.Bloomfield Phys. Rev. Lett. 68, 1774 (1992).Google Scholar
4Bawendi, M. G.Wilson, W.L., Rothberg, L.Carroll, P.J.Jedju, T.M., Steigerwald, M.L. and Brus, L.E.Phys. Rev. Lett. 65, 1623 (1990).CrossRefGoogle Scholar
5Gleiter, H.Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
6Tang, Z.X.Sorenson, CM., Klabunde, K.J. and Hadji-panayis, G.C., J. Colloid Interface Sci. 146, 38 (1991).CrossRefGoogle Scholar
7Hoffman, D. W.Roy, R. and Komarneni, S.J. Am. Ceram. Soc. 67, 468 (1984).CrossRefGoogle Scholar
8Hellstern, E.Fecht, H. J.Fu, Z. and Johnson, W. L.J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
9Kawamura, Y.Takagi, M. and Akai, M.Mater. Sci. Eng. 98, 449 (1988).Google Scholar
10Mandich, M.L.Bondybey, V.E. and Reents, W.D.J. Chem. Phys. 86, 4245 (1987).CrossRefGoogle Scholar
11Edelstein, A. S.Chow, G. M.Altman, E. I.Colton, R. J. and Hwang, D. M., Science 251, 1590 (1991).CrossRefGoogle Scholar
12Saito, Y.Mihama, K. and Uyeda, R.Jpn. J. Appl. Phys. 19, 1603 (1980).Google Scholar
13Iwama, S. and Hayakawa, K.Surf. Sci. 156, 85 (1985).Google Scholar
14Nishida, I. and Kimoto, K.Thin Solid Films 23, 179 (1974).CrossRefGoogle Scholar
15Hahn, H. and Averback, R.S.J. Appl. Phys. 67, 1112 (1990).CrossRefGoogle Scholar
16Chow, G.M.Chien, C.L. and Edelstein, A.S.J. Mater. Res. 6, 8 (1991).Google Scholar
17Granqvist, C. G. and Buhrman, R.A.J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
18Pande, C.S.Acta Metall. 35, 2671 (1987).Google Scholar
19Edelstein, A.S.Kaatz, F.H.Chow, G.M.Altaian, E.I.Colton, R.J., Peterson, M. R. and Mehl, M. unpublished.Google Scholar