Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:20:19.376Z Has data issue: false hasContentIssue false

A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity

Published online by Cambridge University Press:  14 August 2017

HongWei Li
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Hekai Zhu
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Meng Wang
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Xin Min
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Minghao Fang*
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Zhaohui Huang*
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Yan’gai Liu
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
Xiaowen Wu
Affiliation:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: fmh@cugb.edu.cn
Get access

Abstract

A new plasmonic photocatalyst Ag/Bi7Ta3O18 was fabricated by photodeposition-hydrothermal method. The phase composition, microstructure, surface areas, average pore size, UV-vis diffuse reflection spectra, and photocatalytic activities of composite photocatalysts were investigated in detail. The results of the measurements indicated that the Ag0 nanoparticle successfully loads on the surface of Bi7Ta3O18, and the 0.06 Ag/Bi7Ta3O18 photocatalysts exhibited the best photocatalytic activity for the degradation of Rhodamine B (RhB). The improved photocatalytic activity could be contributed to the localized surface plasmon resonance caused by the collective oscillation of the surface electrons of Ag nanoparticles. Additionally, the photocatalytic reaction mechanism was studied by photoluminescence photocurrent, and electron spin resonance analysis. As a result, the Ag nanoparticles onto the Bi7Ta3O18 surface enlarged the electron–hole separation, and the (˙OH) was the dominated active species of degradation RhB in the photocatalytic process.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Xiaobo Chen

References

REFERENCES

Karthikeyan, N., Sivaranjani, T., Dhanavel, S., Gupta, V.K., Narayanan, V., and Stephen, A.: Visible light degradation of textile effluent by electrodeposited multiphase CuInSe2 semiconductor photocatalysts. J. Mol. Liq. 227, 194 (2016).Google Scholar
Zhao, Z.H., Wang, M., Yang, T.Z., Fang, M.H., Zhang, L.N., Zhu, H.K., Tang, C., and Huang, Z.H.: In situ co-precipitation for the synthesis of an Ag/AgBr/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J. Mol. Catal. A: Chem. 424, 8 (2016).CrossRefGoogle Scholar
Di, J., Xia, J.X., Yin, S., Xu, H., Xu, L., Xu, Y.G., He, M.Q., and Li, H.M.: Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2(15), 5340 (2014).CrossRefGoogle Scholar
Chen, L., He, J., Liu, Y., Chen, P., Au, C.T., and Yin, S.F.: Recent advances in bismuth-containing photocatalysts with heterojunctions. Chin. J. Catal. 37(6), 780 (2016).CrossRefGoogle Scholar
Li, X., Yu, J.G., and Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).CrossRefGoogle ScholarPubMed
He, R.A., Cao, S.W., Zhou, P., and Yu, J.G.: Recent advances in visible light Bi-based photocatalysts. Chin. J. Catal. 35(7), 989 (2014).Google Scholar
Li, Y.Y., Wang, J.S., Yao, H.C., Dang, L.Y., and Li, Z.J.: Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal. Commun. 12(7), 660 (2011).Google Scholar
Tu, S., Lu, M.L., Xiao, X., Zheng, C.X., Zhong, H., Zuo, X.X., and Nan, J.M.: Flower-like Bi4O5I2/Bi5O7I nanocomposite: Facile hydrothermal synthesis and efficient photocatalytic degradation of propylparaben under visible-light irradiation. RSC Adv. 6(50), 44552 (2016).Google Scholar
Yu, Y.G., Chen, G., Wang, X., Jia, D.C., Tang, P.X., and Lv, C.: A facile approach to construct BiOI/Bi5O7I composites with heterostructures: Efficient charge separation and enhanced photocatalytic activity. RSC Adv. 5(91), 74174 (2015).Google Scholar
Zhang, G.K., Ming, L., Yu, S.J., Zhang, S.M., Huang, B.B., and Yu, J.G.: Synthesis of nanometer-size Bi3TaO7 and its visible-light photocatalytic activity for the degradation of a 4BS dye. J. Colloid Interface Sci. 345(2), 467 (2010).Google Scholar
Shimada, K., Izawa, C., and Watanabe, T.: Low-temperature synthesis of α-BiTaO4 photocatalyst by the flux method. ISRN Mater. Sci. 2012(11–12), 207 (2012).Google Scholar
Zou, Z.G., Ye, J.H., Sayama, K., and Arakawa, H.: Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1–x Nb x O4 (0 ≤ x ≤ 1). Chem. Phys. Lett. 343(3–4), 303 (2001).Google Scholar
Luo, B.F., Xu, D.B., Di, L., Wu, G.L., Wu, M.M., Shi, W.D., and Min, C.: Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. Chem. Phys. Lett. 7(31), 17061 (2015).Google Scholar
Chon, M.P., Tan, K.B., Khaw, C.C., Zainal, Z., Taufiq Yap, Y.H., Chen, S.K., and Tan, P.Y.: ChemInform abstract: Investigation of the phase formation and dielectric properties of Bi7Ta3O18 . ChemInform 45(15), 479 (2014).CrossRefGoogle Scholar
Wen, J.Q., Xie, J., Chen, X.B., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).CrossRefGoogle Scholar
Wu, C. and Xu, Q.H.: Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 25(16), 9441 (2009).Google Scholar
Liu, Y.P., Liang, F., Lu, H.D., Li, Y.W., Hu, C.Z., and Yu, H.G.: One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4 . Appl. Catal., B 115–116(15), 245 (2012).Google Scholar
Li, J.D., Fang, W., Yu, C.L., Zhou, W.Q., Zhu, L.H., and Xie, Y.: Ag-based semiconductor photocatalysts in environmental purification. Appl. Surf. Sci. 358, 46 (2015).CrossRefGoogle Scholar
Han, Z.Z., Ren, L.L., Cui, Z.H., Chen, C.Q., Pan, H.B., and Chen, J.Z.: Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl. Catal., B 126(38), 298 (2012).Google Scholar
Liu, H.R., Hua, Y.C., Zhang, Z.X., Liu, X.G., Jia, H.S., and Xu, B.S.: Synthesis of spherical Ag/ZnO heterostructural composites withexcellent photocatalytic activity under visible light and UV irradiation. Appl. Surf. Sci. 355, 644 (2015).Google Scholar
Wu, F., Hu, X.Y., Fan, J., Liu, E.Z., Sun, T., Kang, L.M., Hou, W.Q., Zhu, C.J., and Liu, H.C.: Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8(2), 501 (2013).Google Scholar
Chang, G., Tanahashia, I., and Oyama, M.: Localized surface plasmon resonance sensing properties of photocatalytically prepared Ag/TiO2 films. J. Mater. Res. 25, 117 (2010).Google Scholar
Li, S., Tao, Q., Li, D.W., Liu, K., and Zhang, Q.Y.: Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films. J. Mater. Res. 30, 304 (2015).CrossRefGoogle Scholar
Dai, K., Lu, L., Dong, J., Ji, Z., Zhu, G., Liu, Q., Liu, Z., Zhang, Y., Li, D., and Liang, C.: Facile synthesis of a surface plasmon resonance-enhanced Ag/AgBr heterostructure and its photocatalytic performance with 450 nm LED illumination. Dalton Trans. 42(13), 4657 (2013).Google Scholar
Xiao, X., Zhang, W.D., Yu, J.Y., Sun, Y.J., Zhang, Y.X., and Dong, F.: Mechanistic understanding of ternaryAg/AgCl@La(OH)3 nanorods as novel visible light plasmonic photocatalysts. Catal.: Sci. Technol. 6, 5003 (2016).Google Scholar
Li, C.B., Han, Y.X., and Zhao, G.Z.: Synthesis of Ag/AgCl/TiO2 nanotubes: A highly efficient visible light photocatalyst. J. Mater. Sci.: Mater. Electron. 28(2), 1 (2017).Google Scholar
Zhong, S.T., Jiang, W., Han, M., Liu, G.Z., Zhang, N., and Lu, Y.: Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance undervisible light irradiation. Appl. Surf. Sci. 347, 242 (2015).Google Scholar
Seo, J.H., Jeon, W.I., Dembereldorj, U., Lee, S.Y., and Joo, S.W.: Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles. J. Hazard. Mater. 198(2), 347 (2011).Google Scholar
Vasilakia, E., Georgaki, I., Vernardou, D., Vamvakaki, M., and Katsarakis, N.: Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 353, 865 (2015).Google Scholar
Zhu, H.K., Fang, M.H., Huang, Z.H., Liu, Y.G., Chen, K., Guan, M., Tang, C., Zhang, L.N., and Wang, M.: Novel chromium doped perovskites A2ZnTiO6 (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation. Appl. Surf. Sci. 393(30), 348, (2016).CrossRefGoogle Scholar
Yusoff, F., Mohamed, N., Aziz, A., and Ghani, S.A.: Electrocatalytic reduction of oxygen at perovskite (BSCF)–MWCNT composite electrodes. Mater. Sci. Appl. 5(4), 199 (2014).Google Scholar
Sexton, B.A. and Avery, N.R.: Coordination of acetonitrile (CH3CN) to platinum (111): Evidence for an η2(C, N) species. Surf. Sci. 129(1), 21 (1983).Google Scholar
Wang, H., Du, L., Yang, L.L., Zhang, W.J., and He, H.B.: Sol–gel synthesis of La2Ti2O7 modified with PEG4000 for the enhanced photocatalytic activity. J. Adv. Oxid. Technol. 19(2), 366 (2016).Google Scholar
Jordan, R.G., Liu, Y., Qiu, S.L., Ginatempo, B., Bruno, E., Stocks, G.M., and Shelton, W.A.: Electronic structures of disordered Ag–Mg alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 50(16), 11459 (1994).CrossRefGoogle ScholarPubMed
Morgan, W.E., Stec, W.J., and Van Wazer, J.R.: Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 12(4), 953 (1973).Google Scholar
Zhong, H.X., Qiu, Y.L, Zhang, T.T., Li, X.F., Zhang, H.M., and Chen, X.B.: Bismuth nanodendrites as high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746 (2016).Google Scholar
Nefedov, V.I., Firsov, M.N., and Shaplygin, I.S.: Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data. J. Electron Spectrosc. Relat. Phenom. 26(1), 65 (1982).CrossRefGoogle Scholar
Hota, M.K., Bera, M.K., and Maiti, C.K.: Semicond: Flexible metal–insulator–metal capacitors on polyethylene terephthalate plastic substrates. Sci. Technol. 27(27), 105001 (2012).Google Scholar
Tian, N., Huang, H.W., Guo, Y.X., He, Y., and Zhang, Y.H.: Ag–C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Appl. Surf. Sci. 322, 249 (2014).Google Scholar
Sobana, N., Muruganadham, M., and Swaminathan, M.: Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J. Mol. Catal. A: Chem. 258(1), 124 (2006).Google Scholar
Liu, H., Deng, L., Sun, C.C., Li, J.Q., and Zhu, Z.F.: Titanium dioxide encapsulation of supported Ag nanoparticles on theporous silica bead for increased photocatalytic activity. Appl. Surf. Sci. 326, 82 (2015).Google Scholar
Gyawali, G., Adhikari, R., Joshi, B., Kim, T.H., Rodríguezgonzález, V., and Lee, S.W.: Sonochemical synthesis of solar-light-driven Ag–PbMoO4 photocatalyst. J. Hazard. Mater. 263(7480), 45 (2014).Google Scholar
Zhang, X.C., Luo, Z., Wang, Y.T., and Zhang, S.Y.: Synthesis of a novel visible-light-driven photocatalyst Ag/AgAlO2 composite. Chem. Lett. 45(11), 1288 (2016).Google Scholar
Zhao, W., Li, J.H., Wei, Z.B., Wang, S.M., He, H., Sun, C., and Yang, S.G.: Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity. Appl. Catal., B 179, 9 (2015).Google Scholar
Chen, J., Shen, S.H., Guo, P.H., Wang, M., Su, J.Z., Zhao, D.M., and Guo, L.J.: Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. J. Mater. Res. 29(1), 64 (2014).Google Scholar
Chen, X.J., Chen, F.G., Liu, F.L., Yan, X.D., Hu, W., Zhang, G.B., Tian, L.H., Xia, Q.H., and Chen, X.B.: Ag nanoparticles/hematite mesocrystals superstructure composite: A facile synthesis and enhanced heterogeneous photo-fenton activity. Catal.: Sci. Technol. 6(12), 4184 (2016).Google Scholar
Wang, Y.X., Sun, H.Q., Ang, H.M., Tadé, M.O., and Wang, S.B.: 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal., B 164, 159 (2015).Google Scholar
Yan, S.C., Lv, S.B., Li, Z.S., and Zou, Z.G.: Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 39, 1488 (2010).Google Scholar
He, H.R., Cao, S.W., and Yu, J.G.: Recent advances in morphology control and surface modification of Bi-based photocatalysts. Acta Phys.–Chim. Sin. 32(12), 2841 (2016).Google Scholar
Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2016).Google Scholar
Di, J., Xia, J.X., Ji, M.X., Wang, B., Yin, S., Xu, H., Chen, Z.G., and Li, H.M.: Carbon quantum dots induced ultrasmall BiOI nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight. Langmuir 32(8), 2075 (2016).Google Scholar
Luo, S.Q., Chen, J.W., Huang, Z.H., Liu, C., and Fang, M.H.: Controllable synthesizing of BiOI/TiO2 heterostructured nanofibers with highly exposed (110) BiOI facets for enhanced photocatalytic activity. ChemCatChem 8(24), 3780 (2016).CrossRefGoogle Scholar