Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T18:47:34.508Z Has data issue: false hasContentIssue false

New method for rapid determination of crystal orientation via Kikuchi patterns

Published online by Cambridge University Press:  03 March 2011

G.P.E.M. Van Bakel*
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108
D.N. Seidman
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108
*
a)Present address: Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands.
Get access

Abstract

Kikuchi electron diffraction patterns are used extensively to determine crystal orientations via transmission electron microscopy (TEM) or in the electron backscattering pattern (EBSP) mode of scanning electron microscopy (SEM). A new method is presented that is capable of finding crystal orientations, the camera length, and the projection center from only one pattern per grain using a least-squares technique. This method eliminates the need to perform an alignment with a reference crystal in the backscattering mode. Application to a Σ = 13a silicon bicrystal is presented for TEM patterns and EBSP's. A complete analysis of the propagation of random measurement errors into the disorientation axis/angle pair is carried out. The root mean square deviation from the nominal disorientation angle is found to be 0.3°in the case of TEM and 0.5°in the case of EBSP. The root mean square inclination between the nominal and measured disorientation axis is found to be 1°in the case of TEM and 0.5°in the case of EBSP.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Haessner, F., Mater. Sci. Eng. 57, 1 (1983).CrossRefGoogle Scholar
2Randle, V. and Brown, A., Philos. Mag. A 59, 1075 (1989).CrossRefGoogle Scholar
3Gertsman, V. Yu. and Tangri, K., Philos. Mag. A 64, 1319 (1991); Gertsman, V. Yu., Zhilyaev, A.P., Pshenichnyuk, A.I., and Valiev, R.Z., Acta Metall. Mater. 40, 1433 (1992); Gertsman, V.Y., Tangri, K., and Valiev, R.Z., Acta Metall. Mater. 42, 1785 (1994).CrossRefGoogle Scholar
4Sautter, M., Gleiter, H., and B&äro, G., Acta Metall. 25, 467 (1977).CrossRefGoogle Scholar
5Sutton, A.P. and Balluffi, R.W., Acta Metall. 35, 2177 (1987).CrossRefGoogle Scholar
6Kuo, S-M., Seki, A., Oh, Y., and Seidman, D.N., Phys. Rev. Lett. 65, 199 (1990).CrossRefGoogle Scholar
7Hu, J.G. and Seidman, D.N., Phys. Rev. Lett. 65, 199 (1990).Google Scholar
8Krakauer, B.W., Hu, J.G., Kuo, S-M., Mallick, R.L., Seki, A., Seidman, D.N., Baker, J.P., and Loyd, R., Rev. Sci. Instrum. 61, 3390 (1990); Krakauer, B.W. and Seidman, D.N., Rev. Sci. Instrum. 63, 4071 (1992).CrossRefGoogle Scholar
9Seidman, D.N., Mater. Sci. Eng. A 137, 57 (1991).CrossRefGoogle Scholar
10Hu, J.G., Ph.D. Thesis, Northwestern University (1991).Google Scholar
11Hu, J.G. and Seidman, D.N., Scripta Metall. Mater. 26, 693 (1992).Google Scholar
12Seidman, D.N., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, England, 1992), pp. 5884; Foiles, S.M. and Seidman, D.N., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, England, 1992), pp. 497515.Google Scholar
13Krakauer, B.W., Ph.D. Thesis, Northwestern University (1993).Google Scholar
14Krakauer, B.W. and Seidman, D.N., Phys. Rev. B 48, 6274 (1993).Google Scholar
15Weiland, H., J. Metals 46 (9), 37 (1994); Troost, K.Z., Philips J. Res. 47, 151 (1993).Google Scholar
16Cahn, J.W., J. Phys. (Paris) 43, C6199 (1982).Google Scholar
17Wolf, D. and Merkle, K.L., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, England, 1992), pp. 87150.Google Scholar
18Smith, D.A. and Goringe, M.J., Philos. Mag. 25, 1505 (1972).CrossRefGoogle Scholar
19Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, Germany, 1970), Chap. 12.Google Scholar
20Frank, F.C., Metall. Trans. A 19A, 403 (1988); Frank, F.C., Philos. Mag. A 65, 1141 (1992).Google Scholar
21Kikuchi, S., Jpn. J. Phys. 5, 83 (1928).Google Scholar
22Thomas, G. and Goringe, M.J., in Transmission Electron Microscopy of Materials (John Wiley, New York, 1979).Google Scholar
23Venables, J.A. and Harland, C.J., Philos. Mag. 27, 1193 (1973).CrossRefGoogle Scholar
24Dingley, D.J., Scan Electron Micr. IV, 273 (1981).Google Scholar
25Mackenzie, J., Acta Crystallogr. 10, 61 (1957).CrossRefGoogle Scholar
26Bonnet, R. and Durand, F., Phys. Status Solidi A 27, 543 (1975).Google Scholar
27Jang, H., Farkas, D., and De Hosson, J. Th. M., J. Mater. Res. 7, 1707 (1992).CrossRefGoogle Scholar
28Chen, F. and King, A.H., J. Electr. Micr. 6, 55 (1987).CrossRefGoogle Scholar
29Ball, C.J., Philos. Mag. A 4, 1307 (1981).Google Scholar
30Randle, V., in The Measurement of Grain Boundary Geometry (Institute of Physics Publishing, Bristol, 1993).Google Scholar
31Heilmann, P., Clark, W. A. T., and Rigney, D.A., Ultramicroscopy 9, 365 (1982).Google Scholar
32Thomas, G., Trans. Metall. Soc. AIME 233, 1608 (1965).Google Scholar
33Young, C.T., Steele, J.H., and Lytton, J.L., Metall. Trans. 4, 2081 (1973).Google Scholar
34For example, Microsoft Corp.“Excel” for Apple Macintosh, version 4.0, solver option (1992).Google Scholar
35Bollmann, W., Crystal Lattices, Interfaces, Matrices (Imprimerie des Bergues, Geneva, Switzerland, 1982).Google Scholar
36Pumphrey, P.H. and Bowkett, K.M., Phys. Status Solidi A 3, 375 (1970).CrossRefGoogle Scholar