Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T21:10:26.916Z Has data issue: false hasContentIssue false

Numerical calculation of the crystal rotation effect on YBa2Cu3O7−x single crystal growth by the pulling method

Published online by Cambridge University Press:  31 January 2011

Y. Namikawa
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-Ku, Tokyo 135, Japan
M. Egami
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-Ku, Tokyo 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-Ku, Tokyo 135, Japan
Get access

Abstract

A series of numerical calculations of convection were performed for the YBa2Cu3O7−x (Y123) single crystal growth by the modified pulling method (Solute Rich Liquid Crystal Pulling method; SRL-CP method). The finite-difference method was used to calculate the steady state of the axisymmetric two-dimensional incompressible viscous fluid system. The effect of the crystal rotation on the flow pattern and the temperature distribution in the melt was studied. An increase of the crystal diameter and/or the crystal rotation rate increased the strength of the forced convection in the melt, and as a result, the temperature at the crystal growth interface increased. These results were consistent with the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schneemeyer, L. F., Waszczak, J.V., Siegrist, T., van Dover, R. B., Rupp, L. W., Batlogg, B., Cava, R.J., and Murphy, D.W., Nature (London) 328, 601 (1987).CrossRefGoogle Scholar
2.Hidaka, Y., Enomoto, Y., Suzuki, M., Oda, M., and Murakami, T., J. Cryst. Growth 85, 581 (1987).CrossRefGoogle Scholar
3.Wolf, Th., Goldacker, W., Obst, B., Roth, G., and Flükiger, R., J. Cryst. Growth 96, 1010 (1989).CrossRefGoogle Scholar
4.Dembinski, K., Gervais, M., Odier, P., and Coutures, J.P., J. Less-Comm. Met. 164165, 177 (1990).CrossRefGoogle Scholar
5.Gagnon, R., Oussena, M., and Aubin, M., J. Cryst. Growth 114, 186 (1991).CrossRefGoogle Scholar
6.Barilo, S. N., Ges, A. P., Guretskii, S. A., Zhigunov, D. I., Zubets, A. V., Ignatenko, A. A., Igumentsev, A. N., Lomako, I.D., Luginets, A. M., Yakimovich, V. N., Kurochkin, L. A., Markova, L. V., and Krot, O. I., J. Cryst. Growth 119, 403 (1992).CrossRefGoogle Scholar
7.Asaoka, H., Takei, H., Iye, Y., Tamura, M., Kinoshita, M., and Takeya, H., Jpn. J. Appl. Phys. 32, 1091 (1993).CrossRefGoogle Scholar
8.Krauns A. R., Ch., Tagami, M., Sumida, M., Yamada, Y., and Shiohara, Y., Proc. 6th Int. Symp. on Superconductivity (Springer-Verlag, Tokyo, 1994), p. 767.Google Scholar
9.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B-Condensed Matter 96, 207 (1994).CrossRefGoogle Scholar
10.Yamada, Y. and Shiohara, Y., Physica C 217, 182 (1993).CrossRefGoogle Scholar
11.Namikawa, Y., Egami, M., Yamada, Y., and Shiohara, Y., J. Mater. Res. 10, 1593 (1995).CrossRefGoogle Scholar
12.Kopetsch, H., J. Cryst. Growth 88, 71 (1988).CrossRefGoogle Scholar
13.Nikolov, V., Iliev, K., and Peshev, P., J. Cryst. Growth 89, 324 (1988).CrossRefGoogle Scholar
14.Okano, Y., Fukuda, T., Hirata, A., Takano, N., Tsukada, T., Hozawa, M., and Imaishi, N., J. Cryst. Growth 109, 94 (1991).CrossRefGoogle Scholar
15.Derby, J. J. and Xiao, Q., J. Cryst. Growth 113, 575 (1991).CrossRefGoogle Scholar
16.Kakimoto, K., Nicodème, P., Lecomte, M., Dupret, F., and Crochet, M. J., J. Cryst. Growth 114, 715 (1991).CrossRefGoogle Scholar
17.Kawamura, T. and Kuwahara, K., AIAA Paper 84–0340 (1984).Google Scholar
18.Suito, H., Ishii, K., and Kuwahara, K., AIAA Paper 95–2264 (1995).Google Scholar