Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:34:01.906Z Has data issue: false hasContentIssue false

Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes

Published online by Cambridge University Press:  31 January 2011

Hansoo Kim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
Michael J. Kaufman
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
Wolfgang M Sigmund*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
David Jacques
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8410
Rodney Andrews
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8410
*
a)Address all correspondence to this author. e-mail: wsigm@mse.ufl.edu
Get access

Abstract

The crystallographic structure and orientation of iron nanoparticles present in carbon nanotubes (CNTs) was studied when iron was used as a catalyst. It was found that while most of the nanoparticles encapsulated inside the CNTs had the expected α–Fe (body-centered-cubic) phase, a significant number of them formed and retained the γ–Fe (face-centered-cubic) phase that is not the normal bulk phase at room temperature (nor even expected to form at the growth temperature used). It was also found iron particles at the tips of the nanotubes were either α–Fe or cementite (Fe3C). On the basis of these observations and thermodynamics, a mechanism for the formation of these particles and insights into CNT growth is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ebner, C. and Saam, W.F., Phys. Rev. Lett. 38, 1486 (1977).CrossRefGoogle Scholar
2.Evans, R. and Tarazona, P., Phys. Rev. Lett. 52, 557 (1984).CrossRefGoogle Scholar
3.Nakanishi, H. and Fisher, M.E., J. Chem. Phys. 78, 3279 (1983).CrossRefGoogle Scholar
4.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
5.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tamigaki, K., and Hiuri, H., Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
6.Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., Nature (London) 72, 159 (1994).CrossRefGoogle Scholar
7.Guerret-Plecourt, C., Bouar, Y. Le, Loiseau, A., and Pascard, H., Nature (London) 372, 761 (1994).CrossRefGoogle Scholar
8.Sloan, J., Cook, J., Chu, A., Zwiefka-Sibley, M., Green, M.L.H., and Hutchison, J.L., J. Solid State Chem. 140, 83 (1998).CrossRefGoogle Scholar
9.Meyer, R.R., Sloan, J., Dunim-Borkowski, R.E., Kirkland, A.I., Novotmy, M.C., Bailey, S.R., Hutchison, J.L., and Green, M.L.H., Science 289, 1324 (2000).CrossRefGoogle Scholar
10.Koga, K., Gao, G.T., Tanaka, H., and Zeng, X.C., Nature (London) 412, 802 (2001).CrossRefGoogle Scholar
11.Kiang, C.H., Endo, M., Ajayan, P.M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. Lett. 81, 1869 (1998).CrossRefGoogle Scholar
12.Kukovistsky, E.F., L’vov, S.G., Sainov, N.A., Chem. Phys. Lett. 317, 65 (2000).CrossRefGoogle Scholar
13.Kanzow, H. and Ding, A., Phys. Rev. B 60, 11180 (1999).CrossRefGoogle Scholar
14.Gorbunov, A., Jost, O., Pompe, W., and Graff, A., Carbon 40, 113 (2002).CrossRefGoogle Scholar
15.Gavillet, J., Loiseau, A., Journet, C., Willaime, F., Ducastelle, F., and Charlier, J.C., Phys. Rev. Lett. 87, 275504 (2001).CrossRefGoogle Scholar
16.Couchman, P.R. and Jesser, W.A., Nature (London) 269, 481 (1977).CrossRefGoogle Scholar
17.Navascues, G. and Tarazona, P., Mol. Phys. 62, 497 (1987).CrossRefGoogle Scholar
18.Buffat, P. and Borel, J., Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
19.Krivoruchko, P. and Zaikovskii, V.I., Mendeleev Commun. 8, 97 (1998).CrossRefGoogle Scholar
20.Sacco, A., Thacker, P., Chang, T.N., and Chiang, A.T.S., J. Catal. 85, 224 (1984).CrossRefGoogle Scholar
21.Sears, G.W. and Hudson, J.B., J. Chem. Phys. 39, 2380 (1963).CrossRefGoogle Scholar
22.Thomas, J.M. and Walker, P.L., Jr., J. Chem. Phys. 41, 587 (1964).CrossRefGoogle Scholar
23.Krivoruchko, P., Zaikovskii, V.I., and Zamaraev, K.I., Dokl. Akad. Nauk 329, 744 (1993).Google Scholar
24.Hochman, R.F., Electrochem. Soc. Inc. Proc. 77, 715 (1976).Google Scholar
25.Grabke, H.J., Mater. Corros. 49, 303 (1998).3.0.CO;2-P>CrossRefGoogle Scholar
26.Schneider, A., Corros. Sci. 44, 2353 (2002).CrossRefGoogle Scholar
27.Bokx, P.K. De, Kock, A.J.H.M., Boellaard, E., Klop, W., and Geus, J.W., J. Catal. 96, 454 (1985).Google Scholar
28.Alstrup, I., J. Catal. 109, 241 (1988).CrossRefGoogle Scholar
29.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
30.Popov, V.N. and Doren, V.E.V., Phys. Rev. B 61, 3078 (2000).CrossRefGoogle Scholar
31.Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Nishibori, E., Takata, M., Sakata, M., Fujiwara, A., Zhao, X., Iijima, S., and Amdo, Y., Phys. Rev. B 64, 073105 (2001).CrossRefGoogle Scholar
32.Osetsky, Y.N. and Serra, A., Phys. Rev. B 57, 755 (1998).CrossRefGoogle Scholar
33.Morozov, P., Mirzayev, D.A., and Shteynberg, M.M., Fiz. Met. Metalloved. 32, 1290 (1971).Google Scholar