Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T18:57:04.897Z Has data issue: false hasContentIssue false

Observation of fractal patterns in C60-polymer thin films

Published online by Cambridge University Press:  03 March 2011

H.J. Gao
Affiliation:
Department of Radio Electronics, Peking University, Beijing 100871, People's Republic of China
Z.Q. Xue
Affiliation:
Department of Radio Electronics, Peking University, Beijing 100871, People's Republic of China
Q.D. Wu
Affiliation:
Department of Radio Electronics, Peking University, Beijing 100871, People's Republic of China
S. Pang
Affiliation:
Beijing Laboratory of Vacuum Physics, Academia Sinica, Beijing 100080, People's Republic of China
Get access

Abstract

We report the observation of fractal patterns in C60-tetracyanoquinodimethane thin films. The fractal patterns and their microscopic features are described and characterized. The fractal dimension was determined to be 1.69 ± 0.07. According to the characterization results, the observed fractals are compared to the cluster-diffusion-limited-aggregation model. The growth of the fractal patterns in the thin films is also in terms of the existing long-range correlation.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Langer, J. S., Rev. Mod. Phys. 52, 1 (1980).CrossRefGoogle Scholar
2Mandelbrot, B. B., Fractal Geometry of Nature (Freeman, New York, 1982).Google Scholar
3Growth and Form: Fractal and Non-Fractal Patterns in Physics, edited by Stanley, H. E. and Ostrowsky, N. (Martinus Nijhoff, Dordrecht, The Netherlands, 1986).Google Scholar
4Fractals in Physics: Essays in Honour of B.B. Mandelbrot, Physica D, edited by Feder, J. and Aharony, A..Google Scholar
5The Physics of Structure Formation, edited by Guttinger, W. and Dangelmayer, D. (Springer, Berlin, 1987).Google Scholar
6Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 47, 1400 (1981); Phys. Rev. B 27, 5686 (1983).CrossRefGoogle Scholar
7Meakin, P., Phys. Rev. A 27, 1495 (1983).CrossRefGoogle Scholar
8Wang, M. and Ming, N-b., Phys. Rev. Lett. 71, 113 (1993).CrossRefGoogle Scholar
9Kadnoff, L. P., Phys. Today 39 (2), 6 (1986).Google Scholar
10Voss, R. F., J. Stat. Phys. 36, 861 (1984).CrossRefGoogle Scholar
11Deutscher, G. and Lereah, Y., Phys. Rev. Lett. 60, 1510 (1988).CrossRefGoogle Scholar
12Shang, C. H., Li, H. D., and Liu, B. X., Phys. Rev. B 40, 2733 (1989).CrossRefGoogle Scholar
13Kroto, H. K., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).CrossRefGoogle Scholar
14Krätschmer, W., Fostiropoulos, K., and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990).Google Scholar
15David, W. I. F., Ibberson, R. M., Dennis, T. J. S., Hare, J. P., and Passides, K., Europhys. Lett. 18, 219 (1992).Google Scholar
16Herbard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P., and Kortan, A. R., Nature 350, 600 (1991).Google Scholar
17Takagi, T., Yamada, I., Kunori, M., and Kobiyama, S., in Proceedings of the 2nd International Conference on Ion Sources, Vienna, Austria (1972), p. 790.Google Scholar
18Xue, Z. Q., Liu, W. M., Zhao, X. Y., Gao, H. J., Xu, Y. H., Zhu, C. X., Ma, Z. L., and Pang, S. J., Thin Films Beam-Solid Interact. V, 229 (1990).Google Scholar
19Xue, Z. Q., Liu, W. M., Gao, H. J., Zhu, C., Ma, Z., and Pang, S., J. Vac. Sci. Technol. A 10, 627 (1992).Google Scholar
20Feder, J., Fractals (Plenum, New York, 1988).Google Scholar
21Liu, B. X., Huang, L. J., Tao, K., Shang, C. H., and Li, H-D., Phys. Rev. Lett. 59, 745 (1987).CrossRefGoogle Scholar