Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:25:25.687Z Has data issue: false hasContentIssue false

Octyl-β-D-glucopyranoside mediated synthesis of nanocrystalline BaTiO3 using a single-source precursor

Published online by Cambridge University Press:  31 January 2011

Yatendra S. Chaudhary
Affiliation:
Materials Chemistry Group, Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai—400 005, India
Umananda M. Bhatta
Affiliation:
Institute of Physics, Bhubaneshwar, Orissa, India
Deepa Khushalani*
Affiliation:
Materials Chemistry Group, Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai—400 005, India
*
a)Address all correspondence to this author. e-mail: khushalani@tifr.res.in
Get access

Abstract

A new amphiphile: octyl-β-D-glucopyranoside along with a single-source precursor, barium titanium methoxyethoxide, were used to develop a facile route for synthesis of BaTiO3, via either a hydrolytic or a nonhydrolytic method. The average particle size for the samples was on the order of 20 to 30 nm, while that for the control samples (without the amphiphile) ranged from 100 nm to several microns. The high-resolution transmission electron microscopy (HRTEM) images and selected-area electron- diffraction patterns revealed that these nanoparticles were single crystalline; the Raman active longitudinal optical modes observed in calcined (650 °C) samples at 718 and 304 cm−1 directly indicated the presence of tetragonal domains in an overall cubic lattice structure. Moreover, the one-step nonhydrolytic approach developed for the synthesis of BaTiO3 is fast, and it eliminates tedious steps such as prolonged refluxing and aging. Thermogravimetric and Fourier transform infrared (FTIR) analysis were performed to investigate the role of octyl-β-D-glucopyranoside in the evolution of the perovskite phase, grain size, and morphology. These techniques suggested that van der Waals type of interactions were present between the amphiphile and barium titanium methoxyethoxide oligomers, and in turn they led to the controlled growth of nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Prakash, O., Tewari, H.S., Prasad, C.D., Agrawal, D.K.: Synthesis and structure of the system Ba1−xLaxTi1−xCuxO3 (x = 0.50). J. Mater. Sci. Lett. 11, 684 1992CrossRefGoogle Scholar
2Chen, J., Wills, L.A., Wessels, B.W., Schulz, D.L., Marks, T.J.: Structure of organometalic chemical-vapour-deposited BaTiO3 thin films on LaAlO3. J. Electron. Mater. 22, 701 1993CrossRefGoogle Scholar
3Shi, C-S., Shiao, F-Y., Wu, N-C., Wang, M-C.: Characterization and dielectric properties of (SrTiO3/BaTiO3)n multilayer thin films deposited on Pt/Ti/SiO2/Si substrates by double rf magnetron sputtering. Solid State Commun. 125, 633 2003Google Scholar
4Zhu, T., Liang, Z., Li, Y.R., Zhang, Y., Wei, X.H.: Epitaxial growth of BaTiO3 thin films at a low temperature under 300 °C with temperature-controlled BaTiO3 buffer layer. J. Cryst. Growth 294, 236 2006CrossRefGoogle Scholar
5García, T., Bartolo-Pérez, P., de Posada, E., Peña, J.L., Villagrán-Muniz, M.: Studies of pulsed laser deposition processes of BaTiO3 thin films. Surf. Coat. Technol. 201, 3621 2006CrossRefGoogle Scholar
6Chandler, C.D., Roger, C., Hampden-Smith, M.J.: Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205 1993CrossRefGoogle Scholar
7Pfaff, G.: Sol-gel synthesis of barium titanate powders of various compositions. J. Mater. Chem. 2, 591 1992CrossRefGoogle Scholar
8O’Brian, S., Brus, L.E., Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 2001Google Scholar
9Shimooka, H., Tanizaki, T., Mitome, M., Bando, Y., Kohiki, S.: Synthesis of mesoscopic barium titanate single crystals incorporating a cuboid-shaped hollow core. J. Cryst. Growth 275, e2377 2005CrossRefGoogle Scholar
10Cernea, M.: Sol-gel synthesis and characterization of BaTiO3 powder. J. Optoelectronics Adv. Mater. 7, 3015 2005Google Scholar
11Riman, R.E.High-Performance Ceramics, edited by R. Pugh and L. Bergstroem Marcel-Dekker New York 1993Google Scholar
12Matthew, H.F., Payne, D.A.: Synthesis and processing of barium titanate ceramics from alkoxide solutions and monolithic gels. Chem. Mater. 7, 123 1995Google Scholar
13Deb, K.K., Hill, M.D., Kelly, J.F.: Pyroelectric characteristics of modified barium titanate: Ceramics. J. Mater. Res. 7, 3296 1992CrossRefGoogle Scholar
14Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 24107 2004CrossRefGoogle Scholar
15Jiang, Z-J., Liu, C-Y., Sun, L-W.: Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 109, 1730 2005CrossRefGoogle ScholarPubMed
16Petkov, N., Stock, N., Bein, T.: Gold electroless reduction in nanosized channels of thiol-modified SBA-15 material. J. Phys. Chem. B 109, 10737 2005CrossRefGoogle ScholarPubMed
17Limmer, J., Chou, T.P., Cao, G.: Sol-gel preparation and photoluminescence of size controlled germanium nanoparticles embedded in a SiO2 matrix. J. Phys. Chem. B 107, 13313 2003CrossRefGoogle Scholar
18Yang, C-M., Liu, P-H., Ho, Y-F., Chiu, C-Y., Chao, K-J.: Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater. 15, 275 2003CrossRefGoogle Scholar
19Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Steinhart, M., Wehrspohn, R., Wendorff, J.H., Ramesh, R., Alexe, M.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 2003CrossRefGoogle Scholar
20Hernandez, B.A., Chang, K-S., Fisher, E.R., Dorhout, P.K.: Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480 2002CrossRefGoogle Scholar
21Wei, L., Xiaohua, S., Hongwei, H., Meiya, L., Zhong, Z.X.: Surface polarization enhancement in (Pb0.25Ba0.15Sr0.6)TiO3 nanotubes. Appl. Phys. Lett. 89, 163122 2006Google Scholar
22Weatherspoon, M.R., Allan, S.M., Hunt, E., Cai, Y., Sandhage, K.H.: Sol-gel synthesis on self-replicating single-cell scaffolds. Applying complex chemistries to nature’s 3-D nanostructured templates. Chem. Comm. 5, 651 2005CrossRefGoogle Scholar
23Soderman, O., Johansson, I.: Polyhydroxyl-based surfactants and their physico-chemical properties and applications. Curr. Opin. Colloid Interface Sci. 4, 391 2000CrossRefGoogle Scholar
24von Rybinski, W., Hill, K.: Alkyl polyglycosides—Properties and applications of a new class of surfactants. Angew. Chem. Int. Ed. Engl. 37, 1328 19983.0.CO;2-9>CrossRefGoogle Scholar
25Hato, M.: Synthetic glycolipid / water systems. Curr. Opin. Colloid Interface Sci. 6, 268 2001CrossRefGoogle Scholar
26Sierra, M.L., Svensson, M.: Mixed micelles containing alkylglycosides: effect of the chain length and the polar-head group. Langmuir 15, 2301 1999CrossRefGoogle Scholar
27Billinge, S.J.L., Levin, I.: The problem with determining atomic structure at the nanoscale. Science 316, 561 2007CrossRefGoogle ScholarPubMed
28Perry, C.H., Hall, D.B.: Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett. 15, 700 1965CrossRefGoogle Scholar
29Wan, Y., Zhao, D.: On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107(7), 2821 2007CrossRefGoogle ScholarPubMed
30Lattuada, M., Hatton, T.A.: Functionalization of monodisperse magnetic nanoparticles. Langmuir 23(4), 2158 2007CrossRefGoogle ScholarPubMed
31Chaudhary, Y.S., Ghatak, J., Bhatta, U.M., Khushalani, D.: One step method for the self-assembly of metal nanoparticles onto facetted hollow silica tubes. J. Mater. Chem. 16, 3619 2006CrossRefGoogle Scholar
32Meng, F-X., Chen, Y-G., Liu, H-B., Pang, H-J., Shi, D-M., Sun, Y.: Assembly of two novel coordination polymers constructed from metal-organic framework and Keggin-template. J. Mol. Struct. 837, 224 2007CrossRefGoogle Scholar
33Lopez, M.C. Blanco, Rand, B., Riley, F.L.: The isoelectric point of BaTiO3. J. Euro. Ceram. Soc. 20, 107 2000CrossRefGoogle Scholar
34Tang, Z., Kotov, N.A., Giersig, M.: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 2002CrossRefGoogle ScholarPubMed
35Busbee, B.D., Obare, S.O., Murphy, C.J.: An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 15, 414 2005CrossRefGoogle Scholar