Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T22:28:29.240Z Has data issue: false hasContentIssue false

On the mechanism of grain-boundary migration in metals: A molecular dynamics study

Published online by Cambridge University Press:  31 January 2011

J.M. Rickman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S.R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D.L. Woodraska
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. Yip
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The migration of a (100) θ = 43.6°(Σ29) twist grain boundary is observed during the course of a molecular-dynamics simulation. The atomic-level details of the migration are investigated by determining the time dependence of the planar structure factor, a function of the planar interparticle bond angles, and the location of the center of a mass of planes near the grain boundary. It is found that a migration step consists of local bond rearrangements which, when the simulation cell is made large enough, produce domain-like structures in the migrating plane. Although no overall sliding is observed during migration, a local sliding of the planes near the migrating grain boundary accompanies the migration process. It is suggested that a three-dimensional cloud of thermally produced Frenkel-like point defects near the boundary accompanies, and facilitates, its migration.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mott, N. F., Proc. Phys. Soc. 60, 391 (1948).CrossRefGoogle Scholar
2.Turnbull, D., Trans. AIME 661, 191 (1950).Google Scholar
3.Rae, C. M. F. and Smith, D. A., Philos. Mag. A 41, 477 (1980).CrossRefGoogle Scholar
4.Gleiter, H., Acta Metall. 17, 565 (1969), ibid., p. 853.CrossRefGoogle Scholar
5.Straumal, B. B., Sursayeva, V. G., and Shvindlerman, L. S., Phys. Met. Metall. 49, 102 (1980) [Fiz. metall. metalloved. 49, 1021 (1980)].Google Scholar
6.Kopetskii, Ch. V., Sursayeva, V. G., and Shvindlerman, L. S., Sov. Phys. Dokl. 23, 137 (1978) [Dokl. Akad. Nauk. SSSR 238, 842 (1978)].Google Scholar
7.Babcock, S. E. and Balluffi, R. W., Acta Metall. 37, 2357 (1989).CrossRefGoogle Scholar
8.Babcock, S. E. and Balluffi, R. W., Acta Metall. 37, 2367 (1989).CrossRefGoogle Scholar
9.Bishop, G. H., Harrison, R. J., Kwok, T., and Yip, S., J. Appl. Phys. 53, 5596 (1982).CrossRefGoogle Scholar
10.Jhan, R. J. and Bristowe, P. D., Scripta Metall. 24, 1313 (1990).CrossRefGoogle Scholar
11.Counterman, C., Chen, L-Q., and Kalonji, G., J. Physique Colloque CS, C5139 (1988).Google Scholar
12.Lutsko, J. F., Wolf, D., Yip, S., Phillpot, S. R., and Nguyen, T., Phys. Rev. B 38, 11572 (1988).CrossRefGoogle Scholar
13.Lutsko, J. F., Wolf, D., Phillpot, S. R., and Yip, S., Phys. Rev. B 40, 2841 (1989).CrossRefGoogle Scholar
14.Rickman, J. M., Phillpot, S. R., and Wolf, D., in Atomic Scale Calculations of Structure in Materials, edited by Daw, M. S. and Schlüter, M. A. (Mater. Res. Soc. Symp. Proc. 193, Pittsburgh, PA, 1990), p. 325.Google Scholar
15.Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
16.Wolf, D., Lutsko, J. F., and Kluge, M., in Atomistic Simulation of Materials—Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. (Plenum Press, New York, 1989), p. 245.CrossRefGoogle Scholar
17.Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1986).CrossRefGoogle Scholar
18.Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
19. See, for example, Goux, C., Can. Metal. Quarterly 13, 9 (1974).CrossRefGoogle Scholar
20.Ciccotti, G., Guillope, M., and Pontikis, V., Phys. Rev. B 27, 5576 (1983).CrossRefGoogle Scholar
21.Ho, P. S., Kwok, T., Nguyen, T., Nitta, C., and Yip, S., Scripta Metall. 19, 993 (1985).CrossRefGoogle Scholar
22.Aust, K. T., in Interfaces Conference, Melbourne, edited by Gifkins, R. C. (Butterworth's, London, 1969), p. 307.Google Scholar
23.King, A. H. and Smith, D. A., Philos. Mag. A 42, 495 (1980).CrossRefGoogle Scholar
24.Kehr, K. W., Kutner, R., and Binder, K., Phys. Rev. B 23, 4931 (1981).CrossRefGoogle Scholar
25.Ashby, M. F., Surf. Sci. 31, 498 (1972).CrossRefGoogle Scholar
26.Wolf, D., Phillpot, S. R., Jaszczak, J. A., Rickman, J. M., and Yip, S. (unpublished work).Google Scholar
27.Lutsko, J. F. and Wolf, D., unpublished work; see also S. R. Phillpot, S. Yip, P. R. Okamoto, and D. Wolf, in Atomic-Level Properties of Interface Materials, edited by Wolf, D. and Yip, S., to be published by Chapman and Hall, London.Google Scholar
28.Wolf, D., Acta Metall. 37, 1983 (1989); ibid., 2823 (1989).CrossRefGoogle Scholar
29.Gunton, J. D. and Droz, M., Introduction to the Theory of Metastable and Unstable States (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
30.Burton, W., Cabrera, N., and Frank, F. C., Philos. Trans. R. Soc. London A 143, 199 (1951); J. D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by T. Rieste (Plenum Press, New York, 1980), p. 293.Google Scholar
31.Rottman, C., Phys. Rev. Lett. 57, 735 (1986).CrossRefGoogle Scholar
32.Rosato, V., Ciccotti, G., and Pontikis, V., Phys. Rev. B 33, 1860 (1986).CrossRefGoogle Scholar
33.Abraham, F., Adv. Phys. 35, 1 (1986).CrossRefGoogle Scholar