Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T07:09:23.808Z Has data issue: false hasContentIssue false

On the S-phase precipitates in 2024 aluminum alloy: An atomic-scale investigation using high-angle annular dark-field scanning transmission electron microscopy

Published online by Cambridge University Press:  15 April 2020

Chenyang Zhu
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
Kexin Lv
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
Bin Chen*
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
*
a)Address all correspondence to this author. e-mail: steelboy@sjtu.edu.cn
Get access

Abstract

The present article reports on a comprehensive atomic-scale investigation on S-series precipitates in 2024 aluminum alloy. Cs-corrected high-angle annular dark-field scanning transmission electron microscopy is applied to reveal the fine atomic-scale structure of precipitates at early ageing state. Geometrics phase analysis is used for elucidating the induced strain field from precipitates. The precipitate sequence of S-series precipitates in 2024 Al alloy is identified as follows: super saturated solid solutions (s.s.s.s.) → clusters (GPB zone) → S′ phase → S phase. The interfaces between precipitates acting as precursor of S′ phase are well characterized. One typical characteristic of S-series phase precipitates is the coexistence of clusters and subsequent metastable phases. Transformation of metastable phases is characterized. Corresponding hardness structure relationship is revealed, and S′ phase is considered as the key strengthening structure in S-series precipitates in 2024 Al alloys.

Type
Novel Synthesis and Processing of Metals
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shih, H-C., Ho, N-J., and Huang, J.C.: Precipitation behaviors in Al–Cu–Mg and 2024 aluminum alloys. Metall. Mater. Trans. A 27, 2479 (1996).Google Scholar
Alexopoulos, N.D., Velonaki, Z., Stergiou, C.I., and Kourkoulis, S.K.: Effect of ageing on precipitation kinetics, tensile, and work hardening behavior of Al–Cu–Mg (2024) alloy. Mater. Sci. Eng. A 700, 457 (2017).CrossRefGoogle Scholar
Huda, Z., Taib, N.I., and Zaharinie, T.: Characterization of 2024-T3: An aerospace aluminum alloy. Mater. Chem. Phys. 113, 515 (2009).CrossRefGoogle Scholar
Ringer, S.P., Sakurai, T., and Polmear, I.J.: Origins of hardening in aged Al–Cu–Mg(–Ag) alloys. Acta Mater. 45, 3731 (1997).CrossRefGoogle Scholar
Radmilovic, V., Kilaas, R., Dahmen, U., and Shiflet, G.J.: Structure and morphology of S-phase precipitates in aluminum. Acta Mater. 47, 3987 (1999).CrossRefGoogle Scholar
Wang, S.C. and Starink, M.J.: Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193 (2005).CrossRefGoogle Scholar
Wang, S.C., Starink, M.J., and Gao, N.: Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 54, 287 (2006).CrossRefGoogle Scholar
Singh, S. and Goel, D.B.: Influence of thermomechanical aging on fatigue behaviour of 2014 Al-alloy. Bull. Mater. Sci. 28, 91 (2005).Google Scholar
Easton, M. and StJohn, D.: Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—A review of the literature. Metall. Mater. Trans. A 30, 1613 (1999).CrossRefGoogle Scholar
Feng, Z.Q., Yang, Y.Q., Huang, B., Luo, X., Li, M.H., Han, M., and Fu, M.S.: Variant selection and the strengthening effect of S precipitates at dislocations in Al–Cu–Mg alloy. Acta Mater. 59, 2412 (2011).Google Scholar
Zandbergen, M.W., Cerezo, A., and Smith, G.D.W.: Study of precipitation in Al–Mg–Si alloys by atom probe tomography II. Influence of Cu additions. Acta Mater. 101, 149 (2015).CrossRefGoogle Scholar
Perlitz, H. and Westgren, A.: The crystal structure of Al2CuMg. Ark. Kemi, Mineral. Geol. 16B, 1 (1943).Google Scholar
Wang, S.C. and Starink, M.J.: Two types of S phase precipitates in Al–Cu–Mg alloys. Acta Mater. 55, 933 (2007).CrossRefGoogle Scholar
Heying, B., Hoffmann, R-D., and Pöttgen, R.: Structure refinement of the S-phase precipitate MgCuAl2. Zeitschrift für Naturforschung B 60, 491494 (2005).Google Scholar
Styles, M.J., Hutchinson, C.R., Chen, Y., Deschamps, A., and Bastow, T.J.: The coexistence of two S (Al2CuMg) phases in Al–Cu–Mg alloys. Acta Mater. 60, 6940 (2012).CrossRefGoogle Scholar
Feng, Z., Yang, Y., Huang, B., Han, M., Luo, X., and Ru, J.: Precipitation process along dislocations in Al–Cu–Mg alloy during artificial aging. Mater. Sci. Eng., A 528, 706 (2010).CrossRefGoogle Scholar
Parel, T.S., Wang, S.C., and Starink, M.J.: Hardening of an Al–Cu–Mg alloy containing types I and II S phase precipitates. Mater. Des. 31, S2 (2010).CrossRefGoogle Scholar
Hashimoto, T., Zhang, X., Zhou, X., Skeldon, P., Haigh, S.J., and Thompson, G.E.: Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros. Sci. 103, 157 (2016).CrossRefGoogle Scholar
Yang, K., Zhang, P.Z., Li, F., Liang, H., and Yao, Z.: Morphological evolution of S-phase in 2024 aluminum under tensile creep at 448–463 K. J. Mater. Eng. Perform. 28 (2019).Google Scholar
Charai, A., Walther, T., Alfonso, C., Zahra, A.M., and Zahra, C.Y.: Coexistence of clusters, GPB zones, S″-, S′- and S-phases in an Al–0.9% Cu–1.4% Mg alloy. Acta Mater. 48, 2751 (2000).Google Scholar
Kovarik, L., Court, S.A., Fraser, H.L., and Mills, M.J.: GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys. Acta Mater. 56, 4804 (2008).Google Scholar
Zhao, Q.: Cluster strengthening in aluminium alloys. Scr. Mater. 84–85, 43 (2014).Google Scholar
Wang, S.C. and Starink, M.J.: The assessment of GPB2/S″ structures in Al–Cu–Mg alloys. Mater. Sci. Eng. A 386, 156 (2004).CrossRefGoogle Scholar
Chen, Z. and Li, S.: Reinterpretation of precipitation behavior in an aged AlMgCu alloy. J. Mater. Sci. 49, 7659 (2014).CrossRefGoogle Scholar
Zhang, F., Levine, L.E., Allen, A.J., Campbell, C.E., Creuziger, A.A., Kazantseva, N., and Ilavsky, J.: In situ structural characterization of ageing kinetics in aluminum alloy 2024 across angstrom-to-micrometer length scales. Acta Mater. 111, 385 (2016).CrossRefGoogle ScholarPubMed
Song, Y.F., Ding, X.F., Xiao, L.R., Zhao, X.J., Cai, Z.Y., Guo, L., Li, Y.W., and Zheng, Z.Z.: Effects of two-stage aging on the dimensional stability of Al–Cu–Mg alloy. J. Alloys Compd. 701, 508 (2017).Google Scholar
Zhao, Y.L., Yang, Z.Q., Zhang, Z., Su, G.Y., and Ma, X.L.: Double-peak age strengthening of cold-worked 2024 aluminum alloy. Acta Mater. 61, 1624 (2013).CrossRefGoogle Scholar
Garay-Reyes, C.G., González-Rodelas, L., Cuadros-Lugo, E., Martínez-Franco, E., Aguilar-Santillan, J., Estrada-Guel, I., Maldonado-Orozco, M.C., and Martínez-Sánchez, R.: Evaluation of hardness and precipitation in Zn-modified Al2024 alloy after plastic deformation and heat treatments. J. Alloys Compd. 705, 1 (2017).CrossRefGoogle Scholar
Lin, Y.C., Xia, Y.C., Jiang, Y.Q., Zhou, H.M., and Li, L.T.: Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A 565, 420 (2013).Google Scholar
Sha, G., Marceau, R.K.W., Gao, X., Muddle, B.C., and Ringer, S.P.: Nanostructure of aluminium alloy 2024: Segregation, clustering, and precipitation processes. Acta Mater. 59, 1659 (2011).CrossRefGoogle Scholar
Majimel, J., Molenat, G., Danoix, F., Thuillier, O., Blavette, D., Lapasset, G., and Casanove, M.J.: High-resolution transmission electron microscopy and tomographic atom probe studies of the hardening precipitation in an Al–Cu–Mg alloy. Philos. Mag. 84, 3263 (2004).Google Scholar
Feng, Z., Yang, Y., Huang, B., Luo, X., Li, M., Chen, Y., Han, M., Fu, M., and Ru, J.: HRTEM and HAADF-STEM tomography investigation of the heterogeneously formed S (Al2CuMg) precipitates in Al–Cu–Mg alloy. Philos. Mag. 93, 1843 (2013).Google Scholar
Supplementary material: File

Zhu et al. supplementary material

Zhu et al. supplementary material

Download Zhu et al. supplementary material(File)
File 860.7 KB