Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T19:32:18.464Z Has data issue: false hasContentIssue false

On tunneling effects in metal-deposited polyethylene-carbon black and polycarbonate-carbon black systems

Published online by Cambridge University Press:  31 January 2011

T.A. Ezquerra
Affiliation:
Institute de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid, Spain
Calleja F.J. Baltá
Affiliation:
Institute de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid, Spain
J. Plans
Affiliation:
Departamento de Fisica Fundamental, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
Get access

Abstract

Electrical conductivity for polyethylene-carbon black, polycarbonate-carbon black composites was measured for conducting compositions well above the percolation limit. Three conductivity methods were employed in our studies: sputtering coated metal electrodes, painted metal electrodes, and the four-point method. Results suggest that while the two latter methods do not modify substantially the material surface, the former method introduces a low conductivity region at the surface. The effect of contact resistance developed during metal coating is discussed in the light of both fluctuation-induced tunneling predictions and “hopping” transport mechanisms. Experimental results favor the tunneling alternative across the evaporated metalcomposite interphase.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Conductive Polymers, edited by Seymour, R. B. (Plenum, New York, 1981).Google Scholar
2Bueche, F., J. Appl. Phys. 43, 4837 (1972).CrossRefGoogle Scholar
3Bueche, F., J. Appl. Phys. 44, 532 (1973).Google Scholar
4Ezquerra, T. A., Calleja, F. J. Balta, Rueda, D. R., and Plans, J., J. Appl-Phys. 58, 1061 (1985).CrossRefGoogle Scholar
5Sheng, P., Phys. Rev. B 21, 2180 (1980).Google Scholar
6Sichel, E. K., Gittleman, J. I., and Sheng, P., Phys. Rev. B 18, 5712 (1978).CrossRefGoogle Scholar
7Ezquerra, T. A., Calleja, F. J. Balta, and Rueda, D. R., in the 6th Conference of Condensed Matter Division, European Physical Society, Berlin, March, 1985, 9A, Report No. PMO-10–185.Google Scholar
8Calleja, F. J. Balta, Ezquerra, T. A., Rueda, D. R., and Alonso-Lopez, J., J. Mater. Sci. Lett. 3, 65 (1984).Google Scholar
9Valdes, L. B., Proc. IRE 42 (2), 420 (1954).CrossRefGoogle Scholar
10Blythe, A. R., Electrical Properties of Polymers (Cambridge U.P., London, 1979), p. 133.Google Scholar
11Probst, N., Eur. Rubber J., 25 (November 1984).Google Scholar
12Salazar, J. Martinez (private communication).Google Scholar
13Shlovskii, B. I., Phys. Status Solidi B 85, KIII (1978).Google Scholar
14Narkis, M., Ram, A., and Stein, Z., Poly. Eng. Sci. 21, 1049 (1981).Google Scholar
15Sheng, P., Abeles, B., and Arie, Y., Phys. Rev. Lett. 31, 44 (1973).Google Scholar
16Mott, N. F., Philos. Mag. 19, 835 (1969).Google Scholar