Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T02:34:25.691Z Has data issue: false hasContentIssue false

Oxidation behavior of pressureless liquid-phase-sintered α-SiC in ambient air at elevated temperatures

Published online by Cambridge University Press:  31 January 2011

F. Rodríguez-Rojas
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
O. Borrero-López
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
A.L. Ortiz*
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
F. Guiberteau
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
*
a)Address all correspondence to this author. e-mail: alortiz@unex.es
Get access

Abstract

The long-duration oxidation behavior of a pressureless liquid-phase-sintered (LPS) α-SiC with 10 vol% Y3Al5O12 additives was studied by furnace oxidation tests in ambient air at 1100 to 1450 °C. The oxidation of this LPS SiC ceramic was found to be passive throughout these temperatures due to the formation of oxide scales, with a change in the oxidation behavior occurring at 1350 °C. It was also found that the oxidation behavior is very complex, exhibiting two distinct stages at all temperatures: (i) initial nonparabolic oxidation, where the rate-limiting mechanism is the outward diffusion of Y3+ and Al3+ cations from the secondary intergranular phase into the oxide scale with the activation energy of the oxidation being 504 ± 32 kJ/mol, followed by (ii) parabolic oxidation below 1350 °C, where the rate-determining mechanism is the inward diffusion of oxygen through the oxide scale with the activation energy being 310 ± 47 kJ/mol, or paralinear oxidation at and above 1350 °C, where oxidation is controlled by some mixed reaction/diffusion process. The existence of two oxidation regimes reflects the progressive crystallization of the oxide scale during the oxidation. Finally, guidelines are provided for the design and fabrication of low-cost, highly oxidation-resistant LPS SiC or other LPS nonoxide ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Padture, N.P.: In situ-toughened silicon-carbide. J. Am. Ceram. Soc. 77, 519 1994CrossRefGoogle Scholar
2Sigl, L.S.: Thermal conductivity of liquid-phase-sintered silicon carbide. J. Eur. Ceram. Soc. 23, 1115 2003CrossRefGoogle Scholar
3Kim, Y-W., Mitomo, M.Nishimura, T.: High-temperature strength of liquid-phase-sintered SiC with AlN and RE2O3 (RE = Y, Yb). J. Am. Ceram. Soc. 85, 1007 2002CrossRefGoogle Scholar
4Ortiz, A.L., Muñoz-Bernabé, A., Borrero-López, O., Domínguez-Rodríguez, A., Guiberteau, F.Padture, N.P.: Effect of sintering atmosphere on the mechanical properties of liquid-phase-sintered SiC. J. Eur. Ceram. Soc. 24, 3245 2004CrossRefGoogle Scholar
5Gallardo-López, A., Muñoz, A., Martínez-Fernández, J.Domínguez-Rodríguez, A.: High-temperature compressive creep of liquid-phase-sintered silicon carbide. Acta Mater. 47, 2185 1999CrossRefGoogle Scholar
6Borrero-López, O., Ortiz, A.L., Guiberteau, F.Padture, N.P.: Effect of microstructure on sliding-wear properties of liquid-phase-sintered α-SiC. J. Am. Ceram. Soc. 88, 2159 2005CrossRefGoogle Scholar
7Borrero-López, O., Ortiz, A.L., Guiberteau, F.Padture, N.P.: Improved sliding-wear resistance in in situ-toughened silicon carbide. J. Am. Ceram. Soc. 88, 3531 2005CrossRefGoogle Scholar
8Meléndez-Martínez, J.J., Castillo-Rodríguez, M., Domínguez-Rodríguez, A., Ortiz, A.L.Guiberteau, F.: Creep and microstructural evolution at high-temperature of liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc. 90, 163 2007CrossRefGoogle Scholar
9Borrero-López, O., Ortiz, A.L., Guiberteau, F.Padture, N.P.: Sliding-wear-resistant liquid-phase-sintered SiC processed using α-SiC starting powders. J. Am. Ceram. Soc. 90, 541 2007CrossRefGoogle Scholar
10Borrero-López, O., Ortiz, A.L., Guiberteau, F.Padture, N.P.: Effect of liquid-phase content on the contact mechanical properties of liquid-phase-sintered α-SiC. J. Eur. Ceram. Soc. 27, 2521 2007CrossRefGoogle Scholar
11Borrero-López, O., Ortiz, A.L., Guiberteau, F.Padture, N.P.: Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: An overview. J. Eur. Ceram. Soc. 27, 3351 2007CrossRefGoogle Scholar
12Borrero-López, O., Ortiz, A.L., Guiberteau, F.Padture, N.P.: Effect of nature of intergranular phase on sliding-wear resistance of liquid-phase-sintered α-SiC. Scripta Mater. 57, 505 2007CrossRefGoogle Scholar
13Padture, N.P.Lawn, B.R.: Toughness properties of a silicon-carbide with an in-situ induced heterogeneous grain-structure. J. Am. Ceram. Soc. 77, 2518 1994CrossRefGoogle Scholar
14Lawn, B.R., Padture, N.P., Cai, H.Guiberteau, F.: Making ceramics ductile. Science 263, 1114 1994CrossRefGoogle ScholarPubMed
15Lee, S.K.Lee, C.H.: Effects of alpha-SiC versus beta-SiC starting powders on microstructure and fracture-toughness of SiC sintered with Al2O3–Y2O3 additives. J. Am. Ceram. Soc. 77, 1655 1994CrossRefGoogle Scholar
16Mulla, M.A.Krstic, V.D.: Mechanical-properties of beta-SiC pressureless sintered with Al2O3 additions. Acta Metall. Mater. 42, 303 1994CrossRefGoogle Scholar
17Sánchez-González, J., Ortiz, A.L., Guiberteau, F.Pascual-Centenera, C.: Complex impedance spectroscopy study of a liquid-phase-sintered α-SiC. J. Eur. Ceram. Soc. 27, 3941 2007CrossRefGoogle Scholar
18Ihle, J., Martin, H-P., Herrmann, M., Obenaus, P., Adler, J., Hermel, W.Michaelis, A.: The influence of porosity on the electrical properties of liquid-phase-sintered silicon carbide. Int. J. Mater. Res. 97, 649 2006CrossRefGoogle Scholar
19Can, A., McLachlan, D.S., Sauti, G.Herrmann, M.: Relationships between microstructure and electrical properties of liquid-phase-sintered silicon carbide materials. J. Eur. Ceram. Soc. 27, 1361 2005CrossRefGoogle Scholar
20Volz, E., Roosen, A., Hartung, W.Winnacker, A.: Electrical and thermal conductivity of liquid phase sintered SiC. J. Eur. Ceram. Soc. 21, 2089 2001CrossRefGoogle Scholar
21Kleebe, H-J.Siegelin, F.: Schottky barrier formation in liquid-phase-sintered silicon carbide. Z. Metallkd. 94, 211 2003CrossRefGoogle Scholar
22Zheng, Z., Tressler, R.E.Spear, K.E.: The effect of sodium contamination on the oxidation of single-crystal silicon carbide. Corros. Sci. 33, 545 1992CrossRefGoogle Scholar
23Zheng, Z., Tressler, R.E.Spear, K.E.: The effects of Cl2− on the oxidation of single-crystal silicon carbide. Corros. Sci. 33, 557 1992CrossRefGoogle Scholar
24Zheng, Z., Tressler, R.E.Spear, K.E.: A comparison of the oxidation of sodium-implanted CVD Si3N4 with the oxidation of sodium-implanted SiC-crystals. Corros. Sci. 33, 569 1992CrossRefGoogle Scholar
25Zheng, Z., Tressler, R.E.Spear, K.E.: Oxidation of single-crystal silicon carbide. 1. Experimental studies. J. Electrochem. Soc. 137, 854 1990CrossRefGoogle Scholar
26Zheng, Z., Tressler, R.E.Spear, K.E.: Oxidation of single-crystal silicon carbide. 2. Kinetic-model. J. Electrochem. Soc. 137, 2812 1990CrossRefGoogle Scholar
27Narushima, T., Goto, T., Iguchi, Y.Hirai, T.: High-temperature oxidation of chemically vapor-deposited silicon-carbide in wet oxygen at 1823 to 1923 K. J. Am. Ceram. Soc. 73, 1580 1990CrossRefGoogle Scholar
28Schiroky, G.H.: Oxidation behavior of chemically vapor-deposited silicon-carbide. Adv. Ceram. Mater. 2, 137 1987CrossRefGoogle Scholar
29Ramberg, C.E., Cruciani, G., Spear, K.E., Tressler, R.E.Ramberg, C.F.: Passive-oxidation kinetics of high-purity silicon carbide from 800 degrees to 1100 degrees C. J. Am. Ceram. Soc. 79, 2897 1996CrossRefGoogle Scholar
30Ramberg, C.E., Spear, K.E., Tressler, R.E.Chinone, Y.: Oxidation behavior of CVD and single-crystal SiC at 1100 degrees C. J. Electrochem. Soc. 142, 214 1995CrossRefGoogle Scholar
31Costello, J.A., Tressler, R.E.Tsong, I.S.T.: Boron redistribution in sintered alpha-SiC during thermal-oxidation. J. Am. Ceram. Soc. 64, 332 1981CrossRefGoogle Scholar
32Costello, J.A.Tressler, R.E.: Oxidation-kinetics of hot-pressed and sintered alpha-SiC. J. Am. Ceram. Soc. 64, 327 1981CrossRefGoogle Scholar
33Singhal, S.C.: Oxidation-kinetics of hot-pressed silicon-carbide. J. Mater. Sci. 11, 1246 1976CrossRefGoogle Scholar
34Hinze, J.W., Tripp, W.C.Graham, H.C.: High-temperature oxidation of hot-pressed silicon-carbide. Am. Ceram. Soc. Bull. 53, 396 1974Google Scholar
35Weidenmann, K.A., Rixecker, G.Aldinger, F.: Liquid phase sintered silicon carbide (LPS–SiC) ceramics having remarkably high oxidation resistance in wet air. J. Eur. Ceram. Soc. 26, 2453 2006CrossRefGoogle Scholar
36Biswas, K., Rixecker, G.Aldinger, F.: Effect of rare-earth cation additions on the high temperature oxidation behavior of LPS–SiC. Mater. Sci. Eng., A 374, 56 2004CrossRefGoogle Scholar
37Biswas, K., Rixecker, G.Aldinger, F.: Improved high temperature properties of SiC-ceramics sintered with Lu2O3-containing additives. J. Eur. Ceram. Soc. 23, 1099 2003CrossRefGoogle Scholar
38Liu, D-M.: Oxidation of polycrystalline alpha-silicon carbide ceramic. Ceram. Int. 23, 425 1997CrossRefGoogle Scholar
39Jensen, R.P., Luecke, W.E., Padture, N.P.Wiederhorn, S.M.: High-temperature properties of liquid-phase-sintered alpha-SiC. Mater. Sci. Eng., A 282, 109 2000CrossRefGoogle Scholar
40Shen, Z.J., Kall, P.O.Nygren, M.: Effects of phase equilibrium on the oxidation behavior of rare-earth-doped alpha-sialon ceramics. J. Mater. Res. 14, 1462 1999CrossRefGoogle Scholar
41Nordberg, L.O., Nygren, M., Kall, P.O.Shen, Z.J.: Stability and oxidation properties of RE-alpha-sialon ceramics (RE = Y, Nd, Sm, Yb). J. Am. Ceram. Soc. 81, 1461 1998CrossRefGoogle Scholar
42Nordberg, L.O., Kall, P.O.Nygren, M.: A mathematical analysis of the non-parabolic oxidation behavior of alpha-sialon matrices and composites. Key Eng. Mater. 113, 39 1996CrossRefGoogle Scholar
43Persson, J.Nygren, M.: The oxidation-kinetics of beta-sialon ceramics. J. Eur. Ceram. Soc. 13, 467 1994CrossRefGoogle Scholar
44Persson, J., Kall, P.O.Nygren, M.: Parabolic nonparabolic oxidation-kinetics of Si3N4. J. Eur. Ceram. Soc. 12, 177 1993CrossRefGoogle Scholar
45Persson, J., Ekstrom, T., Kall, P.O.Nygren, M.: Oxidation behavior and mechanical-properties of beta-sialons and mixed alpha-beta-sialons sintered with additions of Y2O3 and Nd2O3. J. Eur. Ceram. Soc. 11, 363 1993CrossRefGoogle Scholar
46Persson, J., Kall, P.O.Nygren, M.: Oxidation behavior of Si3N4-based ceramics, studied by the thermogravimetric method. Therm. Acta 214, 27 1993CrossRefGoogle Scholar
47Persson, J., Kall, P.O.Nygren, M.: Interpretation of the parabolic and nonparabolic oxidation behavior of silicon oxynitride. J. Am. Ceram. Soc. 75, 3377 1992CrossRefGoogle Scholar
48Xu, H., Bhatia, T., Deshpande, S.A., Padture, N.P., Ortiz, A.L.Cumbrera, F.L.: Microstructural evolution in liquid-phase-sintered SiC: Part I, effect of starting powder. J. Am. Ceram. Soc. 84, 1578 2001CrossRefGoogle Scholar
49Ortiz, A.L., Cumbrera, F.L., Sánchez-Bajo, F., Guiberteau, F., Xu, H.Padture, N.P.: Quantitative phase-composition analysis of liquid-phase-sintered silicon carbide using the Rietveld method. J. Am. Ceram. Soc. 83, 2282 2000CrossRefGoogle Scholar
50Nagano, T., Gu, H., Zhan, G.D.Mitomo, M.: Effect of atmosphere on superplastic deformation behavior in nanocrystalline liquid-phase-sintered silicon carbide with Al2O3–Y2O3 additions. J. Mater. Sci. 37, 4419 2002CrossRefGoogle Scholar
51Sigl, L.S.Kleebe, H-J.: Core/rim structure of liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc. 76, 773 1993CrossRefGoogle Scholar
52Bondar’, I.A.Galakhov, F.Ya.: Phase equilibria in the system Y2O3–Al2O3–SiO2. Russ. Chem. Bull. 13(7), 1231 1964CrossRefGoogle Scholar
53Guo, S., Hirosaki, N., Tanaka, H., Yamamoto, Y.Nishimura, T.: Oxidation behavior of liquid-phase sintered SiC with AlN and Er2O3 additives between 1200 °C and 1400 °C. J. Eur. Ceram. Soc. 23, 2023 2003CrossRefGoogle Scholar
54Nickel, K.G.: Corrosion of Advanced Ceramics. Measurement and Modelling. NATO ASI Series, Series E. (Applied Sciences),,267,Google Scholar