Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T03:15:07.317Z Has data issue: false hasContentIssue false

Oxygen adsorption and VDR effect in (Sr, Ca)TiO3−x based ceramics

Published online by Cambridge University Press:  31 January 2011

Yoshitaka Nakano
Affiliation:
Department of Materials Science and Engineering, School of Science and Engineering, Waseda University, 4-1, Ohkubo 3-chome, Shinjuku-ku, Tokyo 169, Japan
Noboru Ichinose
Affiliation:
Department of Materials Science and Engineering, School of Science and Engineering, Waseda University, 4-1, Ohkubo 3-chome, Shinjuku-ku, Tokyo 169, Japan
Get access

Abstract

The relation between the oxygen adsorption and the voltage dependence of the resistor (VDR effect) in (Sr, Ca)TiO3−x based ceramics has been investigated. The nonlinearity of the voltage-current characteristics increased with increasing the barrier height, which is thought to be generated by the oxygen chemisorption. Acceptor type trap levels were detected by means of a zero biased DLTS technique at high temperatures. These interfacial energy levels changed with reoxidizing temperatures, and the change can be explained by the degradation of the chernisorbed oxygen. The high temperature type of the chemisorbed oxygen as O2− and O is relatively stable due to the strong pinning effect of trapped electrons, with reoxidizing anneals of grain surfaces above the oxidation temperature, and it contributes greatly to the VDR effect. It is concluded that energy barriers are caused by the interface states generated by the chemisorbed oxygen on grain surfaces and that they determine the VDR effect.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yamaoka, N., Masuyama, M., and Fukui, M., Am. Ceram. Soc. Bull. 62, 698 (1983).Google Scholar
2Kaino, D., Funayama, J., and Yamaoka, N., Jpn. J. Appl. Phys. 24, Suppl. 24–3, 120 (1985).Google Scholar
3Fujimoto, M., Chiang, Y-M., Roshko, A., and Kingery, W. D., J. Am. Ceram. Soc. 68, C300 (1985).Google Scholar
4Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).Google Scholar
5Levinson, L. M. and Philipp, H. R., J. Appl. Phys. 46, 1332 (1975).CrossRefGoogle Scholar
6Mukae, K., Tsuda, K., and Nagasawa, I., Jpn. J. Appl. Phys. 16, 1361 (1977).Google Scholar
7Eda, K., J. Appl. Phys. 49, 2964 (1978).CrossRefGoogle Scholar
8Bernacconi, J., Strässler, S., Knecht, B., Klein, H. P., and Menth, A., Solid State Commun. 21, 867 (1977).Google Scholar
9Pike, G. E. and Seager, C. H., J. Appl. Phys. 50, 3414 (1979).Google Scholar
10Einzinger, R., Appl. Surf. Sci. 3, 340 (1979).Google Scholar
11Mahan, G. D., Levinson, L. M., and Philipp, H. R., J. Appl. Phys. 50, 2799 (1979).Google Scholar
12Pike, G. E., Kurtz, S. R., and Gourley, P. L., J. Appl. Phys. 57, 5512 (1985).CrossRefGoogle Scholar
13Salmon, R., Bonnet, J. P., Graciet, M., Onillon, M., and Hagenmuller, P., Solid State Commun. 34, 301 (1980).Google Scholar
14Sonder, E., Austin, M. M., and Kinser, D. L., J. Appl. Phys. 54, 3566 (1983).CrossRefGoogle Scholar
15Selim, F. A., Gupta, T. K., Hower, P. L., and Carlson, W. G., J. Appl. Phys. 51, 765 (1980).CrossRefGoogle Scholar
16Sukkar, M. H., Tuller, H. L., and Johnson, K. H., in Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (North-Holland, New York, 1982), p. 141.Google Scholar
17Levinson, L. M., in Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (North-Holland, New York, 1982), p. 363.Google Scholar
18Fujitsu, S., Toyoda, H., and Yanagida, H., J. Am. Ceram. Soc. 70, C71 (1987).Google Scholar
19Fujitsu, S., Toyoda, H., Koumoto, K., Yanagida, H., Chikazawa, M., and Kanazawa, T., Bull. Chem. Soc. Jpn. 61, 1979 (1988).CrossRefGoogle Scholar
20Fujitsu, S., Toyoda, H., and Yanagida, H., J. Ceram. Soc. Jpn. 96, 119 (1988). (in Japanese)CrossRefGoogle Scholar
21Fujitsu, S., Toyoda, H., and Yanagida, H., Solid State Ionics 32/33, 482 (1989).Google Scholar
22Tsuda, K. and Mukae, K., J. Ceram. Soc. Jpn. 97, 1211 (1989). (in Japanese)CrossRefGoogle Scholar
23Fujitsu, S., Toyoda, H., and Yanagida, H., to be published in J. Am. Ceram. Soc.Google Scholar
24Gambino, J. P., Kingery, W. D., Pike, G. E., Philipp, H. R., and Levinson, L. M., J. Appl. Phys. 61, 2571 (1987).Google Scholar
25Losee, D. L., J. Appl. Phys. 46, 2204 (1975).CrossRefGoogle Scholar
26Cordaro, J. F., Shim, Y., and May, J. E., J. Appl. Phys. 60, 4186 (1986).CrossRefGoogle Scholar
27Kobayashi, K., Takata, M., Fujimoto, Y., and Okamoto, S., J. Appl. Phys. 60, 4191 (1986).CrossRefGoogle Scholar
28Shim, Y. and Cordaro, J. F., J. Am. Ceram. Soc. 71, 184 (1988).Google Scholar
29Lang, D. V., J. Appl. Phys. 45, 3023 (1979).CrossRefGoogle Scholar
30Tsuda, K. and Mukae, K., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers B. V., Amsterdam, 1987), Part B, p. 1781.Google Scholar
31Fujimoto, M. and Kingery, W. D., J. Am. Ceram. Soc. 68, 169 (1985).CrossRefGoogle Scholar
32Fujimoto, M., Tanaka, J., and Shirasaki, S., Jpn. J. Appl. Phys. 27, 1162 (1988).Google Scholar
33Chan, N-H., Sharma, R. K., and Smyth, D. M., J. Electrochem. Soc. 128, 1762 (1981).Google Scholar
34Mukae, K., Tsuda, K., and Nagasawa, I., J. Appl. Phys. 50, 4475 (1979).CrossRefGoogle Scholar
35Yu, C., Shimizu, Y., Arai, H., and Sheng, S., J. Mater. Sci. Lett. 8, 765 (1989).CrossRefGoogle Scholar
36Takeda, T. and Watanabe, A., J. Phys. Soc. Jpn. 21, 267 (1966).Google Scholar
37Che, M. and Tench, A. J., in Advances in Catalysis, edited by Eley, D. D., Pines, H., and Weisz, P. B. (Academic Press, 1982), Vol. 31, p. 77.Google Scholar
38Che, M. and Tench, A. J., in Advances in Catalysis, edited by Eley, D. D., Pines, H., and Weisz, P. B. (Academic Press, 1983), Vol. 32, p. 1.Google Scholar
39Cope, J. O. and Campbell, I. D., J. Chem. Soc, Faraday Trans. 1, 69, 1 (1971).Google Scholar
40Bray, R. C., Mautner, G. N., Fielden, E. M., and Carle, C. I., in Superoxide and Superoxide Dismutases, edited by Michelson, A. M., McCord, J. M., and Fridovich, I. (Academic Press, 1977), p. 61.Google Scholar
41Schlick, S. and Kevan, L., J. Chem. Phys. 72, 784 (1980).Google Scholar
42Avudaithai, M. and Kutty, T. R. N., Mater. Res. Bull. XXIII, 1675 (1988).CrossRefGoogle Scholar