Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:07:29.107Z Has data issue: false hasContentIssue false

Oxygen incorporation in aluminum nitride via extended defects: Part III. Reevaluation of the polytypoid structure in the aluminum nitride-aluminum oxide binary system

Published online by Cambridge University Press:  03 March 2011

Alistair D. Westwoord*
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Robert A. Youngman
Affiliation:
Carborundum Microelectronics Company, 10409 S. 50th Place, Phoenix, Arizona 85044
Martha R. McCartney
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
Alasiair N. Cormack
Affiliation:
New York State College of Ceramics, Alfred University, Alfred, New York 14802
Michael R. Notis
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
*
a)Present address: Union Carbide Technical Center, Bound Brook, New Jersey 08805.
Get access

Abstract

This paper extends the concepts that were developed to explain the structural rearrangement of the wurtzite AlN lattice due to incorporation of small amounts of oxygen, and to directly use them to assist in understanding the polytypoid structures. Conventional and high-resolution transmission electron microscopy, specific electron diffraction experiments, and atomistic computer simulations have been used to investigate the structural nature of the polytypoids. The experimental observations provide compelling evidence that polytypoid structures are not arrays of stacking faults, but are rather arrays of inversion domain boundaries (IDB's). A new model for the polytypoid structure is proposed with the basic repeat structural unit consisting of a planar IDB-P and a corrugated IDB. This model shares common structural elements with the model proposed by Thompson, even though in his model the polytypoids were described as consisting of stacking faults. Small additions (≃ 1000 ppm) of silicon were observed to have a dramatic effect on the polytypoid structure. First, it appears that the addition of Si causes the creation of a new variant of the planar IDB (termed IDB-P'), different from the IDB-P defect observed in the AlN-Al2O3 polytypoids; second, the addition of Si influences the structure of the corrugated IDB, such that it appears to become planar.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jack, K. H. and Wilson, W. I., Nature Phys. Sci. (London) 238, 28 (1972).CrossRefGoogle Scholar
2Oyama, Y. and Kamigaito, O., Jpn. J. Appl. Phys. 10, 1637 (1971).CrossRefGoogle Scholar
3Bailey, S. W., Frank-Kamenetskii, V.A., Goldsztaub, S., Kato, A., Schulz, H., Pabst, A., Schulz, H., Taylor, H.F. W., Fleischer, M., and Wilson, A.J.C., Acta Crystallogr. A 33, 681684 (1977).CrossRefGoogle Scholar
4Jack, K. H., J. Mater. Sci. 11, 11351158 (1976).CrossRefGoogle Scholar
5Gauckler, L. J., Lukas, H. L., and Petzow, G., J. Am. Ceram. Soc. 58, 346347 (1975).CrossRefGoogle Scholar
6Komeya, K. and Tsuge, A., Yogyo-Kyokai-Shi 89, 615620 (1981).CrossRefGoogle Scholar
7Thompson, D. P., Korgul, P., and Hendry, S., in Progress in Nitrogen Ceramics, NATO Advanced Studies Institute, Series E: Applied Science No. 65, edited by Riley, F.L. (Martinus Nijhoff Publishers, The Hague, The Netherlands, 1983), pp. 6174.CrossRefGoogle Scholar
8Bergman, B., Ekstrom, T., and Micski, A., J. Eur. Ceram. Soc. 8, 141151 (1991).CrossRefGoogle Scholar
9Zhaung, H. K., Li, W. L., Feng, J. W., Huang, Z. K., and Yan, D.S., J. Eur. Ceram. Soc. 7, 329333 (1991).CrossRefGoogle Scholar
10Ekstrom, T. and Nygren, M., J. Am. Ceram. Soc. 75, 259276 (1992).CrossRefGoogle Scholar
11Thompson, D. P., J. Mater. Sci. Lett. 11, 13771380 (1976).Google Scholar
12Thompson, D. P., in Nitrogen Ceramics, NATO Advanced Studies Institute, Series E: Applied Science No. 23, edited by Riley, F. L. (Noordhoff International Publishing, Leyden, The Netherlands, 1977), pp. 129135.CrossRefGoogle Scholar
13Clark, D. R., Shaw, T. M., and Thompson, D. P., J. Mater. Sci. Lett. 13, 217219 (1978).Google Scholar
14Thompson, D. P., Mater. Sci. Forum 47, 2142 (1989).CrossRefGoogle Scholar
15Van Tendeloo, G., Faber, K. T., and Thomas, G., J. Mater. Sci. 18, 525532 (1983).CrossRefGoogle Scholar
16Bando, Y., Mitomo, M., Kitami, Y., and Izumi, F., J. Microsc. 142, 235246 (1986).CrossRefGoogle Scholar
17Krishnan, K. M., Rai, R. S., Thomas, G., Corbin, N. D., and McCauley, J. W., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W. D., and Stokes, R. J. (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA, 1986), pp. 211218.Google Scholar
18Bartram, S. F. and Slack, G. A., Acta Crystallogr. B 35, 22812283 (1979).CrossRefGoogle Scholar
19Sainz de Baranda, P., Knudsen, A. K., and Ruh, E., J. Am. Ceram. Soc. 76, 17611771 (1993).CrossRefGoogle Scholar
20McKernan, S. and Carter, C. B., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 289294.Google Scholar
21Westwood, A. D. and Notis, M. R., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 295300.Google Scholar
22Youngman, R. A., Harris, J. H., Labun, P. A., Graham, R. J., and Weiss, J. K., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater.Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 301306.Google Scholar
23Harris, J. H., Youngman, R. A., and Teller, R. G., J. Mater. Res. 5, 17631773 (1990).CrossRefGoogle Scholar
24Berger, A., J. Am. Ceram. Soc. 74, 1148; J. Mater. Res., Vol. 10, No. 10, Oct 1995–1151 (1991).CrossRefGoogle Scholar
25Westwood, A. D. and Notis, M. R., J. Am. Ceram. Soc. 74, 12261239 (1991).CrossRefGoogle Scholar
26Westwood, A. D., Michael, J. R., and Notis, M. R., in Microbeam Analysis 1991, edited by Howitt, D. G. (San Francisco Press, San Francisco, CA, 1991), pp. 245249.Google Scholar
27McCartney, M.R., Youngman, R. A., and Teller, R.G., Ultramicroscopy 40, 291299 (1992).CrossRefGoogle Scholar
28Westwood, A. D., Michael, J. R., and Notis, M. R., J. Microsc. 167, 287302 (1992).CrossRefGoogle Scholar
29Westwood, A. D., Youngman, R. A., McCartney, M.R., Cormack, A. N., and Notis, M. R., J. Mater. Res. 10, 1270 (1995).CrossRefGoogle Scholar
30Westwood, A. D., Youngman, R. A., McCartney, M.R., Cormack, A. N., and Notis, M. R., J. Mater. Res. 10, 1287 (1995).CrossRefGoogle Scholar
31Youngman, R. A., Westwood, A. D., and McCartney, M.R., in Defect-Interface Interactions, edited by Kvam, E. P., King, A. H., Mills, M. J., Sands, T. D., and Vitek, V. (Mater. Res. Soc. Symp. Proc 319, Pittsburgh, PA, 1994), pp. 4550.Google Scholar
32Slack, G. A., J. Phys. Chem. Solids 34, 321335 (1973).CrossRefGoogle Scholar
33Amelinckx, S. and Landhuyt, J. Van, in Diffraction and Imaging Techniques in Materials Science, edited by Amelinckx, S., Gevers, R., and Van Landuyt, J. (North-Holland Publishing Company, Amsterdam, The Netherlands, 1978), pp. 107151.CrossRefGoogle Scholar
34Serneels, R., Snykers, M., Delavignette, P., Gevers, R., and Amelinckx, S., Phys. Status Solidi B 58, 277292 (1973).CrossRefGoogle Scholar
35Snykers, M., Serneels, R., Delavignette, P., Gevers, R., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi A 41, 5163 (1977).CrossRefGoogle Scholar
36Coene, W., Janssen, G., Op de Beeck, M., and Van Dyke, D., Phys. Rev. Lett. 69, 37433746 (1992).CrossRefGoogle Scholar
37Westwood, A. D., Ph.D. Thesis, Lehigh University, Bethlehem, PA (1992), available through UMI dissertation services.Google Scholar
38Smith, M. E., J. Phys. Chem. 96, 14441448 (1992).CrossRefGoogle Scholar
39Grun, R., Acta Crystallogr. B 35, 800804 (1979).CrossRefGoogle Scholar
40Idresedt, I. and Brosset, C., Acta Chem. Scand 18, 18791886 (1964).CrossRefGoogle Scholar
41Redlich, P., Masters Thesis, Max-Planck Institut fur Metallforschung, Stuttgart, Germany (1993).Google Scholar
42Hwang, S. and Chen, I-W., J. Am. Ceram. Soc. 77, 17191728 (1994).CrossRefGoogle Scholar