Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T20:34:44.788Z Has data issue: false hasContentIssue false

Oxygen interaction with ternary chalcogenide: an electron spectroscopy for chemical analysis study of AgInTe2

Published online by Cambridge University Press:  03 March 2011

S. Badrinarayanan*
Affiliation:
Physical Chemistry Division, Special Instruments Section, National Chemical Laboratory, Pune-411008, India
A.B. Mandale
Affiliation:
Physical Chemistry Division, Special Instruments Section, National Chemical Laboratory, Pune-411008, India
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

X-ray photoelectron spectroscopic measurements of oxidation of the AglnTe2 surface at different temperatures are reported. The results are analyzed quantitatively. The oxidized surface was shown to have TeO2, Te, and In2O3. The presence of In2O is also identified. The experimental results are explained on the basis of the heat of formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shay, J. L. and Wernick, J. H.Ternary Chalcopyrite Semiconductors: Growth, Electrical Properties, and Applications (Pergamon Press, Oxford, 1974).Google Scholar
2Jaffe, J. E. and Zunger, A., Phys. Rev. B 27, 5176 (1983).CrossRefGoogle Scholar
3Jaffe, J. E. and Zunger, A., Phys. Rev. B 28, 5822 (1983).CrossRefGoogle Scholar
4Jaffe, J. E. and Zunger, A., Phys. Rev. B 29, 1882 (1984).CrossRefGoogle Scholar
5Powell, R. A. and Spicer, W. E., Surf. Sci. 55, 681 (1976).CrossRefGoogle Scholar
6Brundle, C. R., Chuang, J. J., and Wandelt, K., Surf. Sci. 68, 459 (1977).CrossRefGoogle Scholar
7Roberts, M. G. and Wood, P. R., J. Electron Spectrosc. Relat. Phenom. 11, 43 (1977).CrossRefGoogle Scholar
8Sen, P. K., Sen, S., and Bauer, C. L., Thin Solid Films 882, 157 (1981).CrossRefGoogle Scholar
9Sen, P., Hegde, M. S., and Rao, C. N. R., Appl. Surf. Sci. 10, 63 (1982).CrossRefGoogle Scholar
10Bouwman, R., Toneman, L. H., and Holsher, A. A., Surf. Sci. 35, 8 (1973).CrossRefGoogle Scholar
11Bouwman, R. and Biloen, P., Anal. Chem. 46, 136 (1974).CrossRefGoogle Scholar
12Kazmerski, L. L., Jamjoum, O., Ireland, P. J., Deb, S. K., Mickelsen, R. A., and Chen, W. S., J. Vac. Sci. Technol. 19, 467 (1981).CrossRefGoogle Scholar
13Krishnasamy, S. V., Manocha, A. S., and Szedon, J. R., J. Vac. Sci. Technol. A 1, 510 (1983).CrossRefGoogle Scholar
14Kazmerski, L. L., Jamjoum, O., Wager, J. F., Ireland, P. J., and Bachmann, K. J., J. Vac. Sci. Technol. A 1, 668 (1983).CrossRefGoogle Scholar
15Massopust, T. P., Ireland, P. J., Kazmerski, L. L., and Bachmann, K. J., J. Vac. Sci. Technol. A 2, 1123 (1984).CrossRefGoogle Scholar
16Corvin, P., Kahn, A., and Wagner, S., J. Appl. Phys. 57, 2967 (1985).CrossRefGoogle Scholar
17Richter, K. and Peplinski, B., J. Electron Spectrosc. Relat. Phenom. 24, 19 (1981).Google Scholar
18Hegde, R. I., Sainkar, S. R., Badrinarayanan, S., and Sinha, A.P.B., J. Electron Spectrosc. Relat. Phenom. 24, 19 (1981).CrossRefGoogle Scholar
19Tambo, T. and Tatsvyama, C., Jpn. J. Appl. Phys. 23, 39 (1984).CrossRefGoogle Scholar
20Bowhill, T., in A Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 2nd ed., edited by Briggs, D. and Seah, M. P. (Wiley, New York, 1990).Google Scholar