Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T02:50:31.742Z Has data issue: false hasContentIssue false

Phase instability in ZrO2–NiAl functionally graded materials

Published online by Cambridge University Press:  31 January 2011

Yi-Rong He
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210
Vidya Subramanian
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210
John J. Lannutti
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210
Get access

Abstract

Sedimentation in organic solvents was followed by hot-pressing to produce 2 mole % yttria stabilized zirconia-NiAl functionally graded materials (FGM's). These FGM's were better able to accommodate high levels of residual stress than alumina-NiAl FGM's; this is possibly due to enhanced tetragonal phase retention. However, we found that the zirconia layer in these FGM's subsequently experiences room temperature transformation of t-ZrO2 to m-ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takebe, H. and Morinaga, K., Materials and Manufacturing Processes 9, 721 (1994).Google Scholar
2.Ham-Su, R. and Wilkinson, D. S., J. Am. Ceram. Soc. 78, 1580 (1995).Google Scholar
3.Zhu, J., Yin, Z., and Lai, Z., J. Mater. Sci. Technol. 10, 188 (1994).Google Scholar
4.Omori, M., Kawahara, M., Sakai, H., Okubo, A., and Hirai, T., Powder and Powder Metallurgy (Japanese) 41, 649 (1994).Google Scholar
5.Nakashima, S., Arikawa, H., Chigasaki, M., and Kojima, Y., Surf. Coatings Technol. 66, 330 (1994).Google Scholar
6.Miller, D. P., Lannutti, J. J., and Yancey, R. N., Proc. 16th Ann. Conf. Composites & Adv. Ceram. Mater. (The American Ceramic Society, Westerville, OH, 1992), p. 365.Google Scholar
7.He, Y., Subramanian, V., and Lannutti, J. J., J. Mat. Synth. Proc. 5, (3) (1997, in press).Google Scholar
8.Miller, D. P., Lannutti, J. J., and Noebe, R. D., J. Mater. Res. 8, 2004 (1993).Google Scholar
9.He, Y., Subramanian, V., and Lannutti, J., unpublished work.Google Scholar
10.Kumar, K. S. and Bao, G., Composites Science and Technology 52, 127 (1994).Google Scholar
11.Lannutti, J. J., MRS Bull. XX (Jan.), 50 (1995).Google Scholar
12.Miller, D. P., Lannutti, J. J., Soboyejo, W. O., and Noebe, R. D. in International Symposium on Structural Intermetallics, edited by Darolia, R., Lewandowski, J. J., and Nathal, C. T. (Minerals, Metals and Materials Society, Warrendale, PA, Seven Springs, PA, 1993), p. 783.Google Scholar
13.Heuer, A. H., in Advances in Ceramics, edited by Heuer, A. H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), Vol. 3, p. 98.Google Scholar
14.Ruhle, M. and Heuer, A. H., in Advances in Ceramics, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1984), Vol. 12, p. 14.Google Scholar
15.Chen, I-W. and Chiao, Y-H., in Advances in Ceramics, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1984), Vol. 12, p. 33.Google Scholar
16.Claussen, N. and Ruhle, M., in Advances in Ceramics, edited by Heuer, A. H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), Vol. 3, p. 164.Google Scholar
17.Gao, L., Yen, T. S., and Guo, J. K., in Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24A, p. 405.Google Scholar
18.Lannutti, J. J., Comp. Eng. 4 (1), 81 (1994).Google Scholar
19.Ruhle, M., Claussen, N., and Heuer, A. H., in Advances in Ceramics, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1984), Vol. 12, p. 352.Google Scholar
20.Tsukuma, K., Kubota, Y., and Tsukidate, T., in Advances in Ceramics, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1984), Vol. 12, p. 382.Google Scholar
21.Watanabe, M., Iio, S., and Fukuura, I., in Advances in Ceramics, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1984), Vol. 12, p. 391.Google Scholar
22.Lee, J-K. and Kim, H., J. Mater. Res. 29, 136 (1994).Google Scholar
23.Winnubst, A. J. and Burggraaf, A. J., in Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24A, p. 39.Google Scholar
24.Iio, S., Watanabe, M., Kuroda, K., Saka, H., and Imura, T., in Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24A, p. 49.Google Scholar
25.Lange, F. F., Dunlop, G. L., and Davis, B. I., J. Am. Ceram. Soc. 69, 237 (1986).Google Scholar
26.Sato, T. and Shimada, M., J. Am. Ceram. Soc. 68, 356 (1985).Google Scholar
27.Behrens, G., Dransmann, G. W., and Heuer, A. H., J. Am. Ceram. Soc. 76, 1025 (1993).Google Scholar
28.Sergo, V., Clarke, D. R., and Pompe, W., J. Am. Ceram. Soc. 78, (3), 633 (1995).Google Scholar
29.Sergo, V. and Clarke, D. R., J. Am. Ceram. Soc. 78 (3), 641 (1995).Google Scholar
30.Andersson, C. A. and Gupta, T. K., in Advances in Ceramics, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramic Society, Westerville, OH, 1981), Vol. 3, p. 184.Google Scholar
31.Jones, R. L., in Thermal Barrier Coating Workshop (NASA Lewis Research Center, Cleveland, OH, 1995).Google Scholar