Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:29:50.140Z Has data issue: false hasContentIssue false

Phase relationships in the system Si3N4–SiO2–Yb2O3

Published online by Cambridge University Press:  03 March 2011

Toshiyuki Nishimura
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba-shi, Ibaraki 305, Japan
Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba-shi, Ibaraki 305, Japan
Get access

Abstract

Phase relationships in the system Si3N4−SiO2−Yb2O3 have been investigated at 1750 °C and compared with those in the system Si3N4−SiO2−Y2O3. Two types of ytterbium silicon oxynitride, Yb2Si3O3N4 (tetragonal) and Yb4Si2O7N2 (monoclinic), were confirmed to exist. The x-ray powder diffraction data of two compounds were indexed based on the space group and unit cells. Melting temperature of Yb4Si2O7N2 was determined as 1870 °C. Yb4Si2O7N2 is a better intergranular phase of silicon nitride ceramics for its high melting temperature.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cheong, D. and Sanders, W. A., J. Am. Ceram. Soc. 75, 3331 (1992).CrossRefGoogle Scholar
2Gazza, G. E., in Progress in Nitrogen Ceramics, edited by Riley, F. L. (Martinus Nijhoff Publishers, The Hague, The Netherlands, 1983), p. 273.CrossRefGoogle Scholar
3Ueno, K. and Toibana, Y., J. Ceram. Soc. Jpn. 91, 409 (1983).Google Scholar
4Sanders, W. A. and Mieskowski, D. M., Am. Ceram. Soc. Bull. 64, 304 (1985).Google Scholar
5Tani, E., Umebayashi, S., Kishi, K., Kobayashi, K., and Nishijima, M., Am. Ceram. Soc. Bull. 65, 1311 (1986).Google Scholar
6Nunn, S. D., Tiegs, T. N., Ploetz, K. L., Walls, C. A., and Bell, N., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by I-W. Chen, Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 359.Google Scholar
7Tsuge, A., Kudo, H., and Komeya, K., J. Am. Ceram. Soc. 57, 269 (1974).CrossRefGoogle Scholar
8Wills, R. R., Holmquist, S., Wimmer, J. M., and Cunningham, J. A., J. Mater. Sci. 11, 1305 (1976).CrossRefGoogle Scholar
9Lange, F. F., Singhal, S. C., and Kuznicki, R. C., J. Am. Ceram. Soc. 60, 249 (1977).CrossRefGoogle Scholar
10Horiuchi, S. and Mitomo, M., J. Mater. Sci. 14, 2543 (1979).CrossRefGoogle Scholar
11Gauckler, L. J., Hohnke, H., and Tien, T. Y., J. Am. Ceram. Soc. 63, 35 (1980).CrossRefGoogle Scholar
12Mitomo, M., Izumi, F., Horiuchi, S., and Matsui, Y., J. Mater. Sci. 17, 2359 (1982).CrossRefGoogle Scholar
13Cinibulk, M. K., Thomas, G., and Johnson, S. M., J. Am. Ceram. Soc. 75, 2037 (1992).CrossRefGoogle Scholar
14Vetrano, J. S., Kleebe, H-J., Hampp, E., Hoffmann, M. J., Ruhle, M., and Cannon, R. M., J. Mater. Sci. 28, 3529 (1993).CrossRefGoogle Scholar
15Klemm, H. and Pezzotti, G., J. Am. Ceram. Soc. 77, 553 (1994).CrossRefGoogle Scholar
16Rendtel, A., Hubner, H., and Schubert, C., in Silicon Nitride '93, edited by Hoffmann, M. J., Becher, P. F., and Petzow, G. (Proceedings of the International Conference on Silicon Nitride-Based Ceramics, Stuttgart, Germany, 1993), p. 593.Google Scholar
17Hoffmann, M. J. and Petzow, G., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by I-W. Chen, Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.CrossRefGoogle Scholar
18Marchand, R., Jayaweera, A., Verdier, P., and Lang, J., C. R. Acad. Sci. Paris, Ser. C 283, 675 (1976).Google Scholar
19Wills, R. R., Stewart, R. W., Cunningham, J. A., and Wimmer, J. M., J. Mater. Sci. 11, 749 (1976).CrossRefGoogle Scholar
20Cheng, Y. and Thompson, D. P., J. Am. Ceram. Soc. 77, 143 (1994).CrossRefGoogle Scholar