Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T03:43:30.677Z Has data issue: false hasContentIssue false

Phase separation in undercooled molten Pd80Si20: Part I

Published online by Cambridge University Press:  31 January 2011

K. L. Lee
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
H. W. Kui
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Get access

Abstract

Three different kinds of morphology are found in undercooled Pd80Si20, and they dominate at different undercooling regimens ΔT, defined as ΔT = T1 – Tk, where T1 is the liquidus of Pd80Si20 and Tk is the kinetic crystallization temperature. In the small undercooling regimen, i.e., for ΔT ≤ 190 K, the microstructures are typically dendritic precipitation with a eutecticlike background. In the intermediate undercooling regimen, i.e., for 190 ≤ ΔT ≤ 220 K, spherical morphologies, which arise from nucleation and growth, are identified. In addition, Pd particles are found throughout an entire undercooled specimen. In the large undercooling regimen, i.e., for ΔT ≥ 220 K, a connected structure composed of two subnetworks is found. A sharp decrease in the dimension of the microstructures occurs from the intermediate to the large undercooling regimen. Although the crystalline phases in the intermediate and the large undercooling regimens are the same, the crystal growth rate is too slow to bring about the occurrence of grain refinement. Combining the morphologies observed in the three undercooling regimens and their crystallization behaviors, we conclude that phase separation takes place in undercooled molten Pd80Si20.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cohen, M.H. and Turnbull, D., Nature 189, 131 (1961).CrossRefGoogle Scholar
2.Marcus, M. and Turnbull, D., Mater. Sci. Eng. 23, 211 (1976).CrossRefGoogle Scholar
3.Turnbull, D., Contemp. Physics 10, 473 (1969).Google Scholar
4.Turnbull, D., The 1980 Campbell Memorial Lecture, The American Society for Metals, Metall. Trans. A, 12A, 695 (1981).CrossRefGoogle Scholar
5.Chen, H.S. and Turnbull, D., Acta Metall. 17, 1021 (1969).CrossRefGoogle Scholar
6.Chou, C.P. and Turnbull, D., J. Non-Cryst. Sol. 17, 169 (1975).CrossRefGoogle Scholar
7.Chen, H.S., Mater. Sci. Eng. 23, 151 (1976).CrossRefGoogle Scholar
8.Tanner, L.E. and Ray, R., Scr. Metall. 14, 657 (1980).CrossRefGoogle Scholar
9.Lee, M.C. and Johnson, W.L., Appl. Phys. Lett. 41, 1054 (1982).CrossRefGoogle Scholar
10.Deng, D. and Argon, A.S., Acta Metall. 34, 2011 (1986).CrossRefGoogle Scholar
11.Gerling, R., Schimansky, F.P., and Wagner, R., Nuclear Sci. Eng. 110, 374 (1992).CrossRefGoogle Scholar
12.Regan, M.J. and Bienenstock, A., Phys. Rev. B 51, 12170 (1995).CrossRefGoogle Scholar
13.Fernandez van Raap, M.B., Sanchez, F.H., and Zhang, Y.D., J. Mater. Res. 10, 1917 (1995).CrossRefGoogle Scholar
14.Busch, R., Schneider, S., Peker, A., and Johnson, W.L., Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
15.Schneider, S., Thiyagarajan, P., and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).CrossRefGoogle Scholar
16.Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., and Rhim, W.K., Appl. Phys. Lett. 68, 1057 (1996).CrossRefGoogle Scholar
17.Miller, M.K., Russell, K.F., Martin, P.M., Busch, R., and Johnson, W.L., J. De Phys. IV 6, 217 (1997).Google Scholar
18.Yuen, C.W., Lee, K.L., and Kui, H.W., J. Mater. Res. 12, 314 (1997).CrossRefGoogle Scholar
19.Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3034 (1998).CrossRefGoogle Scholar
20.Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3043 (1998).CrossRefGoogle Scholar
21.Kui, H.W., Greer, A.L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
22.Lau, C.F. and Kui, H.W., J. Appl. Phys. 67, 3181 (1990).CrossRefGoogle Scholar
23.Lau, C.F. and Kui, H.W., J. Appl. Phys. 73, 2599 (1993).CrossRefGoogle Scholar
24.Seward, T.P., Uhlmann, D.R., and Turnbull, D., J. Am. Ceram. Soc. 51, 634 (1968).CrossRefGoogle Scholar
25.Binary Alloy Phase Diagrams, edited by Massalski, B.T. (American Society for Metals, Metals Park, OH, 1993).Google Scholar
26.Wysocki, J. and Duwez, P., Metall. Trans. A 12, 1455 (1981).CrossRefGoogle Scholar
27.Guo, W.H., Yao, K.F., and Kui, H.W. (unpublished).Google Scholar
28.Cahn, J.W., J. Chem. Phys. 42, 93 (1965).CrossRefGoogle Scholar
29.Walker, J.L., Principles of Solidification, edited by Chalmers, B. (Wiley, New York, 1964), p. 112.Google Scholar
30.Kattamis, T.Z. and Flemings, M.C., Trans. AIME 236, 1523 (1966).Google Scholar
31.Devaud, G. and Turnbull, D., Acta Metall. 35, 765 (1987).CrossRefGoogle Scholar
32.Lau, C.F. and Kui, H.W., Acta Metall. Mater. 39, 323 (1991).Google Scholar
33.Jackson, K.A., Hunt, J.D., Uhlmann, D.R., and Seward, T.P. III, Trans. Metall. Soc., AIME 236, 149 (1966).Google Scholar
34.Schwarz, M., Karma, A., Eckler, K., and Herlach, D.M., Phys. Rev. Lett. 73, 1380 (1994).CrossRefGoogle Scholar
35.Horvay, G., Int. J. Heat Mass Transfer 8, 195 (1965).CrossRefGoogle Scholar
36.Leung, K.K., Chiu, C.P., and Kui, H.W., Scr. Metall. Mater. 32, 1559 (1995).CrossRefGoogle Scholar
37.Xiao, J.Z., Yang, H., and Kui, H.W., in Phase Transformations and Systems Driven Far From Equilibrium, edited by Ma, E., Atzmon, M., Bellon, P. and Trivedi, R. (Mater. Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), p. 15.Google Scholar
38.Xiao, J.Z., Leung, K.K., and Kui, H.W., Appl. Phys. Lett. 67, 3111 (1995).CrossRefGoogle Scholar
39.Xiao, J.Z., Leung, K.K., and Kui, H.W., J. Mater. Res. 12, 873 (1997).CrossRefGoogle Scholar
40.Xiao, J.Z. and Kui, H.W., Scripta Mater. 37, 1017 (1997).CrossRefGoogle Scholar
41.Xiao, J.Z. and Kui, H.W., J. Mater. Res. 14, 1771 (1999).CrossRefGoogle Scholar
42.Cahn, J.W., Trans. Metall. Soc. AIME 242, 166 (1968).Google Scholar
43.Hong, S.Y., Guo, W.H., and Kui, H.W., J. Mater. Res. 14, 3653 (1999).Google Scholar